Kirsten von Elverfeldt
Alpen-Adria-Universität Klagenfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirsten von Elverfeldt.
Archive | 2012
Kirsten von Elverfeldt
In the preceding chapter we discussed that those systems which we generally observe in geomorphology cannot be regarded as systems in equilibrium. This is the case, because geomorphic systems are centres of flow, growth, and change—they are neither static, nor still, nor ‘dead’ (cf. [1, p. xii]). Thus, they are not in equilibrium. Non-linear systems are the norm, not the exception. With increasing results, which contradicted the equilibrium concept, this insight lead to an approach oriented towards non-linearity in the 1990s. When a non-linear approach is applied, every cause can become an effect and every effect can become a cause [2, p. 113], and a system’s equilibrium cannot be established. This insight thus was already communicated 40 years ago, but has, however, not been successfully distributed within the prevalent paradigm.
Archive | 2012
Kirsten von Elverfeldt
As described above the ‘unlimited’ geomorphological system theoretical perspective only has a minor ordering potential—everything can be addressed as a system, and furthermore, everything that is addressed has open boundaries. From this point of view the world thus appears as a continuum, and any delimitation of ‘meaningful’ unities is arbitrarily brought forth by an observer ([1, p. 1], also cf. [2, p. 17]). Hence, geomorphology tends to perceive a world in which “everything is connected with everything else” (“1st law of geography”, [3], personal communication). Everything ‘is system’. Therefore, any system element and any ‘element of the environment’ can again be viewed as a system of its own, resulting in a system theory that can be recursively applied to every aggregation level (scale) (cf. [4, p. 11]). Depending on which system elements and their respective relations are supposed to be studied not only do the system boundaries vary, but also the interactions with its environment. As a result, within classical geomorphological system thinking the system is perceived as being embedded in an environment (also cf. [5]) and, respectively, everything is perceived as being connected to everything else.
Archive | 2012
Kirsten von Elverfeldt
We encounter the term “system” literally everywhere, in everyday discussions about the newest communication systems just as in scientific discussions about the “system earth”, the climate system, the social system, or questions regarding the political system (cf. [1, 2]). But where does system thinking come from, and even more so: Does “the” system thinking exist at all?
Archive | 2012
Kirsten von Elverfeldt
The term ‘system’ is largely accepted as interpretation pattern within geomorphology, which is reflected in the amount of publications within which system theory serves as theoretical reference point. A search within the ISI Web of Science points to a strong increase of geomorphological system theoretical research within the 1990s and the first decade of the twenty first century (This search does not claim completeness and only serves as an indicator for a development. Furthermore, only those articles were captured that utilize “system” within title, abstract, or keywords). From 1960 to 1989 the amount of publications that referred to “geomorph” and “system” (The search algorithm was ‘geomorph*’ AND ‘systems’, and for the determination of the reference frame ‘geomorph’, respectively.) was only 28 of 903 (<5%). Within the following decades, however, system-theoretical studies showed an increase in numbers: approx. one-third of all geomorphological papers showed reference to systems in some form [27% (971 of 3,656) of the publications within the 1990s and 31% (2,205 of 7,044) from 2000 to 2009]. Although the reliability of these numbers is limited and, consequently, they are not supposed to stimulate any further analyses, it can be shown on a random basis that the theoretical foundation as well as the definitions and basic assumptions are rarely, if at all, reflected and analysed. This can be seen as an indication that systems are seen as given and ‘natural’ or obvious.
Archive | 2012
Kirsten von Elverfeldt
The newer system theories from physics, biology, and also from sociology can be summarized under the generic term “second order systems theories”, as all of them have been developed within the paradigm of self-organisation. Still, they are different: They start from different basic assumptions and, most of all, are concerned with completely different research objects. For example, one focuses on biological systems, whilst the others deal with thermodynamic or social systems. Importantly, this does not imply that second order systems theories are contradictory. Consequently, if geomorphology adopted some thoughts and approaches from biological and physical systems theory, no new logical inconsistencies or contradictions should arise. If biological second order systems theory is compared to the theory of dissipative structures it comes as a surprise that, despite the completely different approaches and chosen routes of theory development, there is much common ground.
Archive | 2012
Kirsten von Elverfeldt
Observation has a reviving influence on science [1], and is, at the same time, basis of all knowledge and cognition. Knowledge (Latin/Greek: ‘having seen’) refers to visual perception—when we have seen something, we know of it (cf. Fischer in his preface to Spencer-Brown [2, p. 7]). If, particularly, all science is based on observation and if science is proceeding through it (cf. e.g. [1, p. 10]), this term has to be clarified. Penck understands specific geographical observation as ‘being in the field’, and thorough and accurate observation of what the geographer sees there, unveils, as it were, the problems of his subject and prepossesses him with special ideas [1, p. 9f]. With these statements Penck expresses the former—and partly also contemporary—popular opinion within geomorphology that theory automatically reveals itself just by contemplating the landscape—a literature review is, from this point of view, anything but geographic work. (also cf. Chap. 1).
Archive | 2012
Kirsten von Elverfeldt
In physics, three levels of consideration exist that cannot be reduced to each other (cf. [1, p. 55ff]): mechanics or dynamics, respectively, thermodynamics, and non-linear thermodynamics. Each of these levels focuses on a specific object, which results in findings of different scopes or significance. As will be shown in the following, mechanics and/or dynamics take place on the particle level and thus do not allow for statements on a system as a whole. Thermodynamics, in contrast, is a macroscopic approach, which, however, focuses static systems whilst the evolution of systems cannot be covered. How a system behaves, i.e. develops with time, can only be analysed by means of non-linear thermodynamics. Hence, it is equally important for geomorphology to be aware of the level of respective studies: For example, if the equilibrium of forces is analysed as in the case of slope stability analyses, this study is taking place on the level of mechanics, not allowing for any interpretations of a system state. Sediment budgets, on the other hand, are examples of investigations on the level of thermodynamics, as they focus flows of matter and therefore energy. Still, no conclusions on the evolution of systems can be made. Studies on self-organisation, as for river systems, have to focus on the whole system and infer how the system behaves and may behave in future and thus have to be based on non-linear thermodynamics.
Archive | 2012
Kirsten von Elverfeldt
From the perspective of physics, geomorphological systems are thermodynamic systems. As they are open, they cannot reach thermodynamic equilibrium as long as there any disequilibrium with the environment exists. Still, the state of equilibrium and thus the thought of steady stability builds a reference model for the problem of describing a big ensemble of interconnected components.
Archive | 2012
Kirsten von Elverfeldt
At the beginning I raised the question whether system theoretical thinking is a challenge for geomorphology. Unambiguously, this question has to be answered in the affirmative. This is not only due to the fact that per se a system theoretical foundation of a science is a challenge: After all, modern system theories force scientists to think in loops, as simple causalities are questioned per definition. The specific challenge for geomorphology, however, goes further than this. It is rooted in the epistemological imperative of empiricism that strongly (and nearly utterly) determines geomorphological research. This results in a marginalisation of geomorphological theoretical work and research. This dissertation thesis represents an explicit alternative draft to this research practice. It stresses that theoretical research offers a considerable surplus value. Just as the Austrian composer Anton Bruckner (1824–1896) said: (S)He who wants to build high towers has to give special attention to the foundation. Now, what about this foundation within geomorphology?
Geomorphology | 2016
Kirsten von Elverfeldt; Christine Embleton-Hamann; Olav Slaymaker