Kirsti Hill
Babraham Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirsti Hill.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Yi Wen Kong; Ian G. Cannell; Cornelia H. de Moor; Kirsti Hill; Paul Garside; Tiffany L. Hamilton; Hedda A. Meijer; Helen C. Dobbyn; Mark Stoneley; Keith A. Spriggs; Anne E. Willis; Martin Bushell
MicroRNAs (miRNAs) are noncoding RNAs that base pair imperfectly to homologous regions in target mRNAs and negatively influence the synthesis of the corresponding proteins. Repression is mediated by a number of mechanisms, one of which is the direct inhibition of protein synthesis. Surprisingly, previous studies have suggested that two mutually exclusive mechanisms exist, one acting at the initiation phase of protein synthesis and the other at a postinitiation event. Here, we resolve this apparent dichotomy by demonstrating that the promoter used to transcribe the mRNA influences the type of miRNA-mediated translational repression. Transcripts derived from the SV40 promoter that contain let-7 target sites in their 3′ UTRs are repressed at the initiation stage of translation, whereas essentially identical mRNAs derived from the TK promoter are repressed at a postinitiation step. We also show that there is a miR-34 target site within the 3′ UTR of c-myc mRNA and that promoter dependency is also true for this endogenous 3′ UTR. Overall, these data establish a link between the nuclear history of an mRNA and the mechanism of miRNA-mediated translational regulation in the cytoplasm.
Current Biology | 2005
Heidi C. E. Welch; Alison M. Condliffe; Laura Milne; G. John Ferguson; Kirsti Hill; Louise M. C. Webb; Klaus Okkenhaug; W. John Coadwell; Simon Andrews; Marcus Thelen; Gareth E. Jones; Phillip T. Hawkins; Len Stephens
Rac GTPases regulate cytoskeletal structure, gene expression, and reactive oxygen species (ROS) production. Rac2-deficient neutrophils cannot chemotax, produce ROS, or degranulate upon G protein-coupled receptor (GPCR) activation. Deficiency in PI3Kgamma, an upstream regulator of Rac, causes a similar phenotype. P-Rex1, a guanine-nucleotide exchange factor (GEF) for Rac, is believed to link GPCRs and PI3Kgamma to Rac-dependent neutrophil responses. We have investigated the functional importance of P-Rex1 by generating a P-Rex1(-/-) mouse. P-Rex1(-/-) mice are viable and healthy, with apparently normal leukocyte development, but with mild neutrophilia. In neutrophils from P-Rex1(-/-) mice, GPCR-dependent Rac2 activation is impaired, whereas Rac1 activation is less compromised. GPCR-dependent ROS formation is absent in lipopolysaccharide (LPS)-primed P-Rex1(-/-) neutrophils, but less affected in unprimed or TNFalpha-primed cells. Recruitment of P-Rex1(-/-) neutrophils to inflammatory sites is impaired. Surprisingly, chemotaxis of isolated neutrophils is only slightly reduced, with a mild defect in cell speed, but normal polarization and directionality. Secretion of azurophil granules is unaffected. In conclusion, P-Rex1 is an important regulator of neutrophil function by mediating a subset of Rac-dependent neutrophil responses. However, P-Rex1 is not an essential regulator of neutrophil chemotaxis and degranulation.
FEBS Letters | 2004
Sarah Donald; Kirsti Hill; Charlotte Lécureuil; Romain Barnouin; Sonja Krugmann; W. John Coadwell; Simon Andrews; Simon Walker; Phillip T. Hawkins; Len Stephens; Heidi C. E. Welch
We have identified a new guanine‐nucleotide exchange factor, P‐Rex2, and cloned it from human skeletal muscle and brain libraries. It has widespread tissue distribution but is not expressed in neutrophils. P‐Rex2 is a 183 kDa protein that activates the small GTPase Rac and is regulated by phosphatidylinositol (3,4,5)‐trisphosphate and the βγ subunits of heterotrimeric G proteins in vitro and in vivo. P‐Rex2 has structure, activity and regulatory properties similar to P‐Rex1 but has divergent tissue distribution, as P‐Rex1 is mainly expressed in neutrophils. Together, they form an enzyme family capable of mediating Rac signalling downstream of G protein‐coupled receptors and phosphoinositide 3‐kinase.
Nucleic Acids Research | 2007
Hedda A. Meijer; Martin Bushell; Kirsti Hill; Timothy W. Gant; Anne E. Willis; Peter Jones; Cornelia H. de Moor
The length of the poly(A) tail of an mRNA plays an important role in translational efficiency, mRNA stability and mRNA degradation. Regulated polyadenylation and deadenylation of specific mRNAs is involved in oogenesis, embryonic development, spermatogenesis, cell cycle progression and synaptic plasticity. Here we report a new technique to analyse the length of poly(A) tails and to separate a mixed population of mRNAs into fractions dependent on the length of their poly(A) tails. The method can be performed on crude lysate or total RNA, is fast, highly reproducible and minor changes in poly(A) tail length distribution are easily detected. We validated the method by analysing mRNAs known to undergo cytoplasmic polyadenylation during Xenopus laevis oocyte maturation. We then separated RNA from NIH3T3 cells into two fractions with short and long poly(A) tails and compared them by microarray analysis. In combination with the validation experiments, the results indicate that ∼25% of the expressed genes have a poly(A) tail of less than 30 residues in a significant percentage of their transcripts.
PLOS Pathogens | 2014
Belinda S. Hall; Kirsti Hill; Michael J. McKenna; Joy Ogbechi; Stephen High; Anne E. Willis; Rachel E. Simmonds
Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactones observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but also the loss of membrane receptors, adhesion molecules and T-cell cytokines that drive the aetiology of Buruli ulcer.
Oncogene | 2008
Helen C. Dobbyn; Kirsti Hill; Tiffany L. Hamilton; Keith A. Spriggs; Becky M. Pickering; Mark J. Coldwell; C. H. De Moor; Martin Bushell; Anne E. Willis
There are three major isoforms of BAG-1 in mammalian cells, termed BAG-1L (p50), BAG-1M (p46) and BAG-1S (p36) that function as pro-survival proteins and are associated with tumorigenesis and chemoresistance. Initiation of BAG-1 protein synthesis can occur by both cap-dependent and cap-independent mechanisms and it has been shown that synthesis of BAG-1S is dependent upon the presence of an internal ribosome entry segment (IRES) in the 5′-UTR of BAG-1 mRNA. We have shown previously that BAG-1 IRES–meditated initiation of translation requires two trans-acting factors poly (rC) binding protein 1 (PCBP1) and polypyrimidine tract binding protein (PTB) for function. The former protein allows BAG-1 IRES RNA to attain a structure that permits binding of the ribosome, while the latter protein appears to be involved in ribosome recruitment. Here, we show that the BAG-1 IRES maintains synthesis of BAG-1 protein following exposure of cells to the chemotoxic drug vincristine but not to cisplatin and that this is brought about, in part, by the relocalization of PTB and PCBP1 from the nucleus to the cytoplasm.
Leukemia | 2014
Emilie Horvilleur; Thomas Sbarrato; Kirsti Hill; Ruth V. Spriggs; M Screen; Pj Goodrem; Kirsty Sawicka; Lc Chaplin; C Touriol; Graham Packham; Kathleen N. Potter; Stephan Dirnhofer; Alexandar Tzankov; Mjs Dyer; Martin Bushell; Marion MacFarlane; Anne E. Willis
Dysregulated expression of factors that control protein synthesis is associated with poor prognosis of many cancers, but the underlying mechanisms are not well defined. Analysis of the diffuse large B-cell lymphoma (DLBCL) translatome revealed selective upregulation of mRNAs encoding anti-apoptotic and DNA repair proteins. We show that enhanced synthesis of these proteins in DLBCL is mediated by the relief of repression that is normally imposed by structure in the 5′-untranslated regions of their corresponding mRNAs. This process is driven by signaling through mammalian target of rapamycin, resulting in increased synthesis of eukaryotic initiation factor (eIF) 4B complex (eIF4B), a known activator of the RNA helicase eIF4A. Reducing eIF4B expression alone is sufficient to decrease synthesis of proteins associated with enhanced tumor cell survival, namely DAXX, BCL2 and ERCC5. Importantly, eIF4B-driven expression of these key survival proteins is directly correlated with patient outcome, and eIF4B, DAXX and ERCC5 are identified as novel prognostic markers for poor survival in DLBCL. Our work provides new insights into the mechanisms by which the cancer-promoting translational machinery drives lymphomagenesis.
Methods in Enzymology | 2006
Kirsti Hill; Heidi C. E. Welch
The P-Rex family of guanine-nucleotide exchange factors (GEFs) are activators of the small GTPase Rac (Donald et al., 2004; Rosenfeldt et al., 2004; Welch et al., 2002). They are directly regulated in vitro and in vivo by the lipid second messenger phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)P3) and by the betagamma subunits of heterotrimeric G proteins (Donald et al., 2004; Rosenfeldt et al., 2004; Welch et al., 2002). Activation by PtdIns(3,4,5)P3 occurs by means of the PH domain of P-Rex1 and activation by Gbetagamma subunits by means of the catalytic DH domain (Hill et al., 2005). P-Rex1 and P-Rex2 also contain two DEP and two PDZ protein interaction domains, as well as homology over their COOH-terminal half to inositol polyphosphate 4-phosphatase (Donald et al., 2004; Welch et al., 2002). These domains, although not necessary for P-Rex1 activity in vitro, influence its basal and/or stimulated Rac-GEF activity, suggesting that their interaction with the DH/PH domain tandem is important for P-Rex1 function (Hill et al., 2005). P-Rex2B, a splice variant of P-Rex2, lacks the C-terminal half (Rosenfeldt et al., 2004). P-Rex1 was originally identified during a search for PtdIns(3,4,5)P3-dependent activators of Rac in neutrophils and purified to homogeneity from pig leukocyte cytosol, in which it is the major such activity (Welch et al., 2002). P-Rex1 is mainly expressed in neutrophils and regulates reactive oxygen species formation in these cells (Welch et al., 2002), whereas P-Rex2 is expressed in a wide variety of tissues but not in neutrophils (Donald et al., 2004), and P-Rex2B is expressed in the heart (Rosenfeldt et al., 2004). This Chapter describes our methods for (1) the purification of endogenous P-Rex1 from pig leukocyte cytosol, (2) the production and purification of recombinant P-Rex proteins and their substrate GTPase Rac from Sf9 cells, and (3) the in vitro assay for measuring the GEF activities of native or recombinant P-Rex proteins.
Cell Death and Disease | 2016
Thomas Sbarrato; Emilie Horvilleur; Tuija Pöyry; Kirsti Hill; Lc Chaplin; Ruth V. Spriggs; Mark Stoneley; Lindsay A. Wilson; Sandrine Jayne; Tom Vulliamy; Daniel Beck; Inderjeet Dokal; Martin J. S. Dyer; Alison Yeomans; Graham Packham; Martin Bushell; Simon D. Wagner; Anne E. Willis
We have used polysome profiling coupled to microarray analysis to examine the translatome of a panel of peripheral blood (PB) B cells isolated from 34 chronic lymphocytic leukaemia (CLL) patients. We have identified a ‘ribosome-related’ signature in CLL patients with mRNAs encoding for ribosomal proteins and factors that modify ribosomal RNA, e.g. DKC1 (which encodes dyskerin, a pseudouridine synthase), showing reduced polysomal association and decreased expression of the corresponding proteins. Our data suggest a general impact of dyskerin dysregulation on the translational apparatus in CLL and importantly patients with low dyskerin levels have a significantly shorter period of overall survival following treatment. Thus, translational dysregulation of dyskerin could constitute a mechanism by which the CLL PB B cells acquire an aggressive phenotype and thus have a major role in oncogenesis.
web science | 2009
Ian R. Powley; Alexander Kondrashov; Lucy A. Young; Helen C. Dobbyn; Kirsti Hill; Ian G. Cannell; Mark Stoneley; Yi Wen Kong; Julia A. Cotes; Graeme Cameron Murray Smith; Ronald C. Wek; Christopher J. Hayes; Timothy W. Gant; Keith A. Spriggs; Martin Bushell; Anne E. Willis