Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirstin K. Holsman is active.

Publication


Featured researches published by Kirstin K. Holsman.


PLOS ONE | 2013

Spatial Match-Mismatch between Juvenile Fish and Prey Provides a Mechanism for Recruitment Variability across Contrasting Climate Conditions in the Eastern Bering Sea

Elizabeth C. Siddon; Trond Kristiansen; Franz J. Mueter; Kirstin K. Holsman; Ron A. Heintz; Edward V. Farley

Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.


Estuaries | 2003

The Necessity for Intertidal Foraging by Estuarine Populations of Subadult Dungeness Crab, Cancer magister: Evidence from a Bioenergetics Model

Kirstin K. Holsman; David A. Armstrong; David A. Beauchamp; Jennifer L. Ruesink

Complex intertidal habitats characteristic of northeastern Pacific coastal estuaries provide critical nursery environments for young-of-the-year Dungeness crab,Cancer magister, yet their role in supporting subsequent year classes remains unclear. SubadultC. magister (40–130 mm; 1+ and >1+ year classes), which reach densities as high as 4,300 crabs ha−1 in subtidal channels during low tides, migrate during flood tides from subtidal refuges into intertidal habitats to forage. As with other brachyuran species that undertake extensive tidally-driven migrations, intertidal foraging may contribute significantly to the energy budget of subadultC. magister. In order to explore the energetic incentive for intertidal migrations by subadult crabs, we developed an ontogenetically-based bioenergetics model for crabs within Willapa Bay, Washington. The model showed that energetic demand varied spatially across the bay, with the highest average energetic demand of a population of subadult crabs (2.13×106 kJ ha−1) occurring in a habitat stratum termed lower side channel (LSC) and characterized by relatively little subtidal area and extensive intertidal flats. Comparison of model results with subtidal prey production revealed that the latter could not satisfy subadultC. magister energetic demands, especially in LSC where modeled crab predation depleted subtidal prey biomass within 17 simulation days. We estimate that 1 ha of subtidal crabs from LSC would minimally require an additional 1.6 ha of intertidal area to satisfy energetic demands without depleting prey biomass. Our model results support the assertion thatC. magister make regular migrations to forage on productive intertidal flats, and suggest that intertidal foraging may contribute significantly to the diet of subadult crabs in coastal estuaries.


Ecological Applications | 2010

Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator

Kirstin K. Holsman; P. Sean McDonald; Pablo Barreyro; David A. Armstrong

Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However, restoration of affected areas to a preinvasion state will also depend on long-term patterns of succession in invaded areas and the degree of persistence of physical changes that continue to alter biotic characteristics of the habitat. Our work highlights: (1) the efficacy of employing multiple methods of inquiry to evaluate causal relationships through mechanisms of interaction, and (2) the importance of targeting particular ecological functions when identifying both short- and long-term goals of restoration efforts.


Estuaries and Coasts | 2006

Bioenergetics modeling to investigate habitat use by the nonindigenous crab,Carcinus maenas, in Willapa Bay, Washington

P. Sean McDonald; Kirstin K. Holsman; David A. Beauchamp; Brett R. Dumbauld; David A. Armstrong

A bioenergetics model was developed and applied to questions of habitat use and migration behavior of nonindigenous European green crab (Carcinus maenas) in Willapa Bay, Washington, USA. The model was parameterized using existing data from published studies on the ecology and physiology ofC. maenas and allied brachyuran crabs., Simulations of the model were run describing four scenarios of habitat use and behavior during a 214-d simulation period (April–October) including crabs occupying mid littoral habitat, high littoral habitat, sublittoral habitat, and sublittoral habitat but undertaking intertidal migrations. Monthly trapping was done along an intertidal gradient in Willapa Bay to determine the actual distribution of crabs for the same time interval as the simulation period, and model results were compared to the observed pattern. Model estimates suggest no intrinsic energetic incentive for crabs to occupy littoral habitats since metabolic costs were c. 6% higher for these individuals than their sublittoral counterparts. Crabs in the littoral simulations were also less efficient than sublittoral crabs at converting consumed energy into growth. Monthly trapping revealed thatC. maenas are found predominantly in mid littoral habitats of Willapa Bay and there is no evidence of resident sublittoral populations. The discrepancy intimates the significance of other factors, including interspecific interactions, that are not incorporated into the model but nonetheless increase metabolic demand. Agonistic encounters with native Dungeness crabs (Cancer magister) may be chief among these additional costs, andC. maenas may largely avoid interactions by remaining in littoral habitats neglected by native crabs, such as meadows of nonindigenous smooth cordgrass (Spartina alterniflora). AdultC. maenas in Willapa Bay may occupy tidal elevations that minimize such encounters, and metabolic costs, while simultaneously maximizing submersion time and foraging opportunities.


Ices Journal of Marine Science | 2016

Ecosystem considerations in Alaska: the value of qualitative assessments

Stephani Zador; Kirstin K. Holsman; Kerim Aydin; Sarah Gaichas

&NA; The application of ecosystem considerations, and in particular ecosystem report cards, in federal groundfish fisheries management in Alaska can be described as an ecosystem approach to fisheries management (EAFM). Ecosystem information is provided to managers to establish an ecosystem context within which deliberations of fisheries quota occur. Our goal is to make the case for the need for qualitative ecosystem assessments in EAFM, specifically that qualitative synthesis has advantages worthy to keep a permanent place at the fisheries management table. These advantages include flexibility and speed in responding to and synthesizing new information from a variety of sources. First, we use the development of indicator‐based ecosystem report cards as an example of adapting ecosystem information to management needs. Second, we review lessons learned and provide suggestions for best practices for applying EAFM to large and diverse fisheries in multiple marine ecosystems. Adapting ecosystem indicator information to better suit the needs of fisheries managers resulted in succinct report cards that summarize ecosystem trends, complementing more detailed ecosystem information to provide context for EAFM. There were several lessons learned in the process of developing the ecosystem report cards. The selection of indicators for each region was influenced by geography, the extent of scientific knowledge/data, and the particular expertise of the selection teams. Optimizing the opportunity to qualitatively incorporate ecosystem information into management decisions requires a good understanding of the management system in question. We found that frequent dialogue with managers and other stakeholders leads to adaptive products. We believe that there will always be a need for qualitative ecosystem assessment because it allows for rapid incorporation of new ideas and data and unexpected events. As we build modelling and predictive capacity, we will still need qualitative synthesis to capture events outside the bounds of current models and to detect impacts of the unexpected.


Ecosystem Health and Sustainability | 2017

An ecosystem‐based approach to marine risk assessment

Kirstin K. Holsman; Jameal F. Samhouri; Geoffrey Cook; Elliott L. Hazen; Erik Olsen; Maria Khorsand Dillard; Stephen Kasperski; Sarah Gaichas; Christopher R. Kelble; Mike Fogarty; Kelly S. Andrews

Abstract Risk assessments quantify the probability of undesirable events along with their consequences. They are used to prioritize management interventions and assess tradeoffs, serving as an essential component of ecosystem‐based management (). A central objective of most risk assessments for conservation and management is to characterize uncertainty and impacts associated with one or more pressures of interest. Risk assessments have been used in marine resource management to help evaluate the risk of environmental, ecological, and anthropogenic pressures on species or habitats including for data‐poor fisheries management (e.g., toxicity, probability of extinction, habitat alteration impacts). Traditionally, marine risk assessments focused on singular pressure‐response relationships, but recent advancements have included use of risk assessments in an context, providing a method for evaluating the cumulative impacts of multiple pressures on multiple ecosystem components. Here, we describe a conceptual framework for ecosystem risk assessment (), highlighting its role in operationalizing , with specific attention to ocean management considerations. This framework builds on the ecotoxicological and conservation literature on risk assessment and includes recent advances that focus on risks posed by fishing to marine ecosystems. We review how examples of s from the United States fit into this framework, explore the variety of analytical approaches that have been used to conduct s, and assess the challenges and data gaps that remain. This review discusses future prospects for s as decision‐support tools, their expanded role in integrated ecosystem assessments, and the development of next‐generation risk assessments for coupled natural–human systems.


Frontiers in Marine Science | 2017

Comparing Apples to Oranges: Common Trends and Thresholds in Anthropogenic and Environmental Pressures across Multiple Marine Ecosystems

Jamie C. Tam; Jason S. Link; Scott I. Large; Kelly S. Andrews; Kevin D. Friedland; Jamison Gove; Elliott L. Hazen; Kirstin K. Holsman; Mandy Karnauskas; Jameal F. Samhouri; Rebecca Shuford; Nick Tomilieri; Stephani Zador

Ecosystem-based management (EBM) in marine ecosystems considers impacts caused by complex interactions between environmental and anthropogenic pressures (i.e. oceanographic, climatic, socio-economic) and marine communities. EBM depends, in part, on ecological indicators that facilitate understanding of inherent properties and the dynamics of pressures within marine communities. Thresholds of ecological indicators delineate ecosystem status because they represent points at which a small increase in one or many pressure variables results in an abrupt change of ecosystem responses. The difficulty in developing appropriate thresholds and reference points for EBM lies in the multidimensionality of both the ecosystem responses and the pressures impacting the ecosystem. Here, we develop thresholds using gradient forest for a suite of ecological indicators in response to multiple pressures that convey ecosystem status for large marine ecosystems from the US Pacific, Atlantic, sub-Arctic, and Gulf of Mexico. We detected these thresholds of ecological indicators based on multiple pressures. Commercial fisheries landings above approximately 2-4.5 t km-2 and fisheries exploitation above 20-40% of the total estimated biomass (of invertebrates and fish) of the ecosystem resulted in a change in the direction of ecosystem structure and functioning in the ecosystems examined. Our comparative findings reveal common trends in ecosystem thresholds along pressure gradients and also indicate that thresholds of ecological indicators are useful tools for comparing the impacts of environmental and anthropogenic pressures across multiple ecosystems. These critical points can be used to inform the development of EBM decision criteria.


Marine Ecology Progress Series | 2006

Intertidal migration and habitat use by subadult Dungeness crab Cancer magister in a NE Pacific estuary

Kirstin K. Holsman; P. Sean McDonald; David A. Armstrong


Ices Journal of Marine Science | 2014

Guidance for implementation of integrated ecosystem assessments: a US perspective

Phillip S. Levin; Christopher R. Kelble; Rebecca Shuford; Cameron H. Ainsworth; Yvonne L. Dereynier; Rikki Dunsmore; Michael J. Fogarty; Kirstin K. Holsman; Evan A. Howell; Mark E. Monaco; Stephanie A. Oakes; Francisco E. Werner


Biological Conservation | 2009

Using an unplanned experiment to evaluate the effects of hatcheries and environmental variation on threatened populations of wild salmon

Eric R. Buhle; Kirstin K. Holsman; Mark D. Scheuerell; Andrew Albaugh

Collaboration


Dive into the Kirstin K. Holsman's collaboration.

Top Co-Authors

Avatar

Kerim Aydin

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Stephani Zador

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jameal F. Samhouri

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

James N. Ianelli

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André E. Punt

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Elliott L. Hazen

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Kelly S. Andrews

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Gaichas

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge