Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirstin N. Sterner is active.

Publication


Featured researches published by Kirstin N. Sterner.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Successive radiations, not stasis, in the South American primate fauna

Jason A. Hodgson; Kirstin N. Sterner; Luke J. Matthews; Andrew S. Burrell; Rachana A. Jani; Ryan L. Raaum; Caro-Beth Stewart; Todd R. Disotell

The earliest Neotropical primate fossils complete enough for taxonomic assessment, Dolichocebus, Tremacebus, and Chilecebus, date to approximately 20 Ma. These have been interpreted as either closely related to extant forms or as extinct stem lineages. The former hypothesis of morphological stasis requires most living platyrrhine genera to have diverged before 20 Ma. To test this hypothesis, we collected new complete mitochondrial genomes from Aotus lemurinus, Saimiri sciureus, Saguinus oedipus, Ateles belzebuth, and Callicebus donacophilus. We combined these with published sequences from Cebus albifrons and other primates to infer the mitochondrial phylogeny. We found support for a cebid/atelid clade to the exclusion of the pitheciids. Then, using Bayesian methods and well-supported fossil calibration constraints, we estimated that the platyrrhine most recent common ancestor (MRCA) dates to 19.5 Ma, with all major lineages diverging by 14.3 Ma. Next, we estimated catarrhine divergence dates on the basis of platyrrhine divergence scenarios and found that only a platyrrhine MRCA less than 21 Ma is concordant with the catarrhine fossil record. Finally, we calculated that 33% more change in the rate of evolution is required for platyrrhine divergences consistent with the morphologic stasis hypothesis than for a more recent radiation. We conclude that Dolichocebus, Tremacebus, and Chilecebus are likely too old to be crown platyrrhines, suggesting they were part of an extinct early radiation. We note that the crown platyrrhine radiation was concomitant with the radiation of 2 South American xenarthran lineages and follows a global temperature peak and tectonic activity in the Andes.


Molecular Phylogenetics and Evolution | 2014

Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes.

Luca Pozzi; Jason A. Hodgson; Andrew S. Burrell; Kirstin N. Sterner; Ryan L. Raaum; Todd R. Disotell

The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.


Molecular Ecology | 2003

Molecular evidence for deep phylogenetic divergence in Mandrillus sphinx

Sandrine Souquière; Stephen L. Clifford; Katharine Abernethy; Michael William Bruford; Todd R. Disotell; Kirstin N. Sterner; Pierre Roques; Preston A. Marx; E. J. Wickings

Mandrills (Mandrillus sphinx) are forest primates indigenous to western central Africa. Phylogenetic analysis of 267 base pairs (bp) of the cytochrome b gene from 53 mandrills of known and 17 of unknown provenance revealed two phylogeographical groups, with haplotypes differentiated by 2.6% comprising seven synonymous transitions. The distribution of the haplotypes suggests that the Ogooué River, Gabon, which bisects their range, separates mandrill populations in Cameroon and northern Gabon from those in southern Gabon. The haplotype distribution is also concordant with that of two known mandrill simian immunodeficiency viruses, suggesting that these two mandrill phylogroups have followed different evolutionary trajectories since separation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries

Morris Goodman; Kirstin N. Sterner; Munirul Islam; Monica Uddin; Chet C. Sherwood; Patrick R. Hof; Zhuo Cheng Hou; Leonard Lipovich; Hui Jia; Lawrence I. Grossman; Derek E. Wildman

Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed ≈6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each genes nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.


Cerebral Cortex | 2014

Developmental Changes in the Transcriptome of Human Cerebral Cortex Tissue: Long Noncoding RNA Transcripts

Leonard Lipovich; Adi L. Tarca; Juan Cai; Hui Jia; Harry T. Chugani; Kirstin N. Sterner; Lawrence I. Grossman; Monica Uddin; Patrick R. Hof; Chet C. Sherwood; Christopher W. Kuzawa; Morris Goodman; Derek E. Wildman

The human neocortex is characterized by protracted developmental intervals of synaptogenesis and myelination, which allow for an extended period of learning. The molecular basis of these and other postnatal developmental changes in the human cerebral cortex remain incompletely understood. Recently, a new large class of mammalian genes, encoding nonmessenger, long nonprotein-coding ribonucleic acid (lncRNA) molecules has been discovered. Although their function remains uncertain, numerous lncRNAs have primate-specific sequences and/or show evidence of rapid, lineage-specific evolution, making them potentially relevant to the evolution of unique human neural properties. To examine the hypothesis that lncRNA expression varies with age, potentially paralleling known developmental trends in synaptogenesis, myelination, and energetics, we quantified levels of nearly 6000 lncRNAs in 36 surgically resected human neocortical samples (primarily derived from temporal cortex) spanning infancy to adulthood. Our analysis identified 8 lncRNA genes with distinct developmental expression patterns. These lncRNA genes contained anthropoid-specific exons, as well as splice sites and polyadenylation signals that resided in primate-specific sequences. To our knowledge, our study is the first to describe developmental expression profiles of lncRNA in surgically resected in vivo human brain tissue. Future analysis of the functional relevance of these transcripts to neural development and energy metabolism is warranted.


Journal of Human Evolution | 2011

Genomic data reject the hypothesis of a prosimian primate clade.

Natalie M. Jameson; Zhuo Cheng Hou; Kirstin N. Sterner; Amy Weckle; Morris Goodman; Michael E. Steiper; Derek E. Wildman

The phylogenetic position of tarsiers within the primates has been a controversial subject for over a century. Despite numerous morphological and molecular studies, there has been weak support for grouping tarsiers with either strepsirrhine primates in a prosimian clade or with anthropoids in a haplorrhine clade. Here, we take advantage of the recently released whole genome assembly of the Philippine tarsier, Tarsius syrichta, in order to infer the phylogenetic relationship of Tarsius within the order Primates. We also present estimates of divergence times within the primates. Using a 1.26 million base pair multiple sequence alignment derived from 1078 orthologous genes, we provide overwhelming statistical support for the presence of a haplorrhine clade. We also present divergence date estimates using local relaxed molecular clock methods. The estimated time of the most recent common ancestor of extant Primates ranged from 64.9 Ma to 72.6 Ma, and haplorrhines were estimated to have a most recent common ancestor between 58.9 Ma and 68.6 Ma. Examination of rates of nucleotide substitution in the three major extant primate clades show that anthropoids have a slower substitution rate than either strepsirrhines or tarsiers. Our results provide the framework on which primate morphological, reproductive, and genomic features can be reconstructed in the broader context of mammalian phylogeny.


American Journal of Physical Anthropology | 2012

Adrenal androgen production in catarrhine primates and the evolution of adrenarche

Robin M. Bernstein; Kirstin N. Sterner; Derek E. Wildman

Adrenarche is a developmental event involving differentiation of the adrenal gland and production of adrenal androgens, and has been hypothesized to play a role in the extension of the preadolescent phase of human ontogeny. It remains unclear whether any nonhuman primate species shows a similar suite of endocrine, biochemical, and morphological changes as are encompassed by human adrenarche. Here, we report serum concentrations of the adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) measured in 698 cross-sectional and mixed longitudinal serum samples from catarrhine primates ranging from 0.6 to 47 years of age. DHEAS in Pan is most similar to that of humans in both age-related pattern and absolute levels, and a transient early increase appears to be present in Gorilla. DHEA levels are highest in Cercocebus, Cercopithecus, and Macaca. We also tested for evidence of adaptive evolution in six genes that code for proteins involved in DHEA/S synthesis. Our genetic analyses demonstrate the protein-coding regions of these genes are highly conserved among sampled primates. We describe a tandem gene duplication event probably mediated by a retrotransposon that resulted in two 3-β-hydroxysteroid dehydrogenase/Delta 5-Delta 4 genes (HSD3B1 and HSD3B2) with tissue specific functions in catarrhines. In humans, HSD3B2 is expressed primarily in the adrenals, ovary, and testis, while HSD3B1 is expressed in the placenta. Taken together, our findings suggest that while adrenarche has been suggested to be unique to hominoids, the evolutionary roots for this developmental stage are more ancient.


PLOS ONE | 2012

Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

Kirstin N. Sterner; Amy Weckle; Harry T. Chugani; Adi L. Tarca; Chet C. Sherwood; Patrick R. Hof; Christopher W. Kuzawa; Amy M. Boddy; Asad Abbas; Ryan L. Raaum; Lucie Gregoire; Leonard Lipovich; Lawrence I. Grossman; Monica Uddin; Morris Goodman; Derek E. Wildman

In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development.


American Journal of Epidemiology | 2017

Chronic noncommunicable diseases in 6 low- and middle-income countries: Findings from wave 1 of the world health organization's Study on Global Ageing and Adult Health (SAGE)

Perianayagam Arokiasamy; Uttamacharya; Paul Kowal; Benjamin D. Capistrant; Theresa E. Gildner; Elizabeth A. Thiele; Richard B. Biritwum; Alfred E. Yawson; George Mensah; Tamara Maximova; Fan Wu; Yanfei Guo; Yang Zheng; Sebastiana Zimba Kalula; Aarón Salinas Rodríguez; Betty Manrique Espinoza; Melissa A. Liebert; Geeta Eick; Kirstin N. Sterner; Tyler M. Barrett; Kwabena O. Duedu; Ernest Gonzales; Nawi Ng; Joel Negin; Yong Jiang; Julie Byles; Savathree Madurai; Nadia Minicuci; J. Josh Snodgrass; Nirmala Naidoo

In this paper, we examine patterns of self-reported diagnosis of noncommunicable diseases (NCDs) and prevalences of algorithm/measured test-based, undiagnosed, and untreated NCDs in China, Ghana, India, Mexico, Russia, and South Africa. Nationally representative samples of older adults aged ≥50 years were analyzed from wave 1 of the World Health Organizations Study on Global Ageing and Adult Health (2007-2010; n = 34,149). Analyses focused on 6 conditions: angina, arthritis, asthma, chronic lung disease, depression, and hypertension. Outcomes for these NCDs were: 1) self-reported disease, 2) algorithm/measured test-based disease, 3) undiagnosed disease, and 4) untreated disease. Algorithm/measured test-based prevalence of NCDs was much higher than self-reported prevalence in all 6 countries, indicating underestimation of NCD prevalence in low- and middle-income countries. Undiagnosed prevalence of NCDs was highest for hypertension, ranging from 19.7% (95% confidence interval (CI): 18.1, 21.3) in India to 49.6% (95% CI: 46.2, 53.0) in South Africa. The proportion untreated among all diseases was highest for depression, ranging from 69.5% (95% CI: 57.1, 81.9) in South Africa to 93.2% (95% CI: 90.1, 95.7) in India. Higher levels of education and wealth significantly reduced the odds of an undiagnosed condition and untreated morbidity. A high prevalence of undiagnosed NCDs and an even higher proportion of untreated NCDs highlights the inadequacies in diagnosis and management of NCDs in local health-care systems.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phylogenomic evidence of adaptive evolution in the ancestry of humans

Morris Goodman; Kirstin N. Sterner

In Charles Darwin’s tree model for life’s evolution, natural selection adaptively modifies newly arisen species as they branch apart from their common ancestor. In accord with this Darwinian concept, the phylogenomic approach to elucidating adaptive evolution in genes and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places humans and other primates and mammals with respect to one another. For more than a century, first from the comparative immunological work of Nuttall on blood sera and now from comparative genomic studies, molecular findings have demonstrated the close kinship of humans to chimpanzees. The close genetic correspondence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of the modern human phenotype had already evolved during our ancestry with chimpanzees. Thus, a phylogenomic assessment of being human should examine earlier stages of human ancestry as well as later stages. In addition, with the availability of a number of mammalian genomes, similarities in phenotype between distantly related taxa should be explored for evidence of convergent or parallel adaptive evolution. As an example, recent phylogenomic evidence has shown that adaptive evolution of aerobic energy metabolism genes may have helped shape such distinctive modern human features as long life spans and enlarged brains in the ancestries of both humans and elephants.

Collaboration


Dive into the Kirstin N. Sterner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chet C. Sherwood

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick R. Hof

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Paul Kowal

World Health Organization

View shared research outputs
Top Co-Authors

Avatar

Amy Weckle

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge