Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirstine Belling is active.

Publication


Featured researches published by Kirstine Belling.


Nature Communications | 2015

Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios

Søren Besenbacher; Siyang Liu; Jose M. G. Izarzugaza; Jakob Grove; Kirstine Belling; Jette Bork-Jensen; Shujia Huang; Thomas Damm Als; Shengting Li; Rachita Yadav; Arcadio Rubio-García; Francesco Lescai; Ditte Demontis; Junhua Rao; Weijian Ye; Thomas Mailund; Rune M. Friborg; Christian N. S. Pedersen; Ruiqi Xu; Jihua Sun; Hao Liu; Ou Wang; Xiaofang Cheng; David Flores; Emil Rydza; Kristoffer Rapacki; John Damm Sørensen; Piotr Jaroslaw Chmura; David Westergaard; Piotr Dworzynski

Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e−8 and 1.5e−9 per nucleotide per generation for SNVs and indels, respectively.


Endocrine-related Cancer | 2012

MicroRNA expression profiling of carcinoma in situ cells of the testis

Guy Wayne Novotny; Kirstine Belling; Jesper B. Bramsen; John Nielsen; Jette Bork-Jensen; Kristian Almstrup; Si Brask Sonne; Jørgen Kjems; Ewa Rajpert-De Meyts; Henrik Leffers

Testicular germ cell tumours, seminoma (SE) and non-seminoma (NS), of young adult men develop from a precursor cell, carcinoma in situ (CIS), which resembles foetal gonocytes and retains embryonic pluripotency. We used microarrays to analyse microRNA (miRNA) expression in 12 human testis samples with CIS cells and compared it with miRNA expression profiles of normal adult testis, testis with Sertoli-cell-only that lacks germ cells, testis tumours (SE and embryonal carcinoma (EC), an undifferentiated component of NS) and foetal male and female gonads. Principal components analysis revealed distinct miRNA expression profiles characteristic for each of the different tissue types. We identified several miRNAs that were unique to testis with CIS cells, foetal gonads and testis tumours. These included miRNAs from the hsa-miR-371-373 and -302-367 clusters that have previously been reported in germ cell tumours and three miRNAs (hsa-miR-96, -141 and -200c) that were also expressed in human epididymis. We found several miRNAs that were upregulated in testis tumours: hsa-miR-9, -105 and -182-183-96 clusters were highly expressed in SE, while the hsa-miR-515-526 cluster was high in EC. We conclude that the miRNA expression profile changes during testis development and that the miRNA profile of adult testis with CIS cells shares characteristic similarities with the expression in foetal gonocytes.


Journal of Translational Medicine | 2013

Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals

Stine Buch Thorsen; Martin Lundberg; Andrea Villablanca; Sarah Louise T Christensen; Kirstine Belling; Birgitte Sander Nielsen; Mick Knowles; Nick Gee; Hans Jørgen Nielsen; Nils Brünner; Ib Jarle Christensen; Simon Fredriksson; Jan Stenvang; Erika Assarsson

BackgroundAlthough the potential of biomarkers to aid in early detection of colorectal cancer (CRC) is recognized and numerous biomarker candidates have been reported in the literature, to date only few molecular markers have been approved for daily clinical use.MethodsIn order to improve the translation of biomarkers from the bench to clinical practice we initiated a biomarker study focusing on a novel technique, the proximity extension assay, with multiplexing capability and the possible additive effect obtained from biomarker panels. We performed a screening of 74 different biomarkers in plasma derived from a case–control sample set consisting of symptomatic individuals representing CRC patients, patients with adenoma, patients with non-neoplastic large bowel diseases and healthy individuals.ResultsAfter statistical evaluation we found 12 significant indicators of CRC and the receiver operating characteristic (ROC) curve of Carcinoembryonic antigen (CEA), Transferrin Receptor-1 (TFRC), Macrophage migration inhibitory factor (MIF), Osteopontin (OPN/SPP1) and cancer antigen 242 (CA242) showed additive effect. This biomarker panel identified CRC patients with a sensitivity of 56% at 90% specificity and thus the performance is sufficiently high to further investigate this combination of five proteins as serological biomarkers for detection of CRC. Furthermore, when applying the indicators to identify early-stage CRC a combination of CEA, TFRC and CA242 resulted in a ROC curve with an area under the curve of 0.861.ConclusionsFive plasma protein biomarkers were found to be potential CRC discriminators and three of these were additionally found to be discriminators of early-stage CRC. These explorative data in symptomatic individuals demonstrates the feasibility of the multiplex proximity extension assay for screening of potential serological protein biomarkers and warrants independent analyses in a larger sample cohort, including asymptomatic individuals, to further validate the performances of our CRC biomarker panel.


Molecular Oncology | 2015

Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance

Niels Frank Jensen; Jan Stenvang; Mette Kristina Beck; Barbora Hanáková; Kirstine Belling; Khoa Nguyen Do; Birgitte Viuff; Sune Boris Nygård; Ramneek Gupta; Mads Rasmussen; Line Schmidt Tarpgaard; Tine Plato Hansen; Eva Budinská; Per Pfeiffer; Fred T. Bosman; Sabine Tejpar; Arnaud Roth; Mauro Delorenzi; Claus L. Andersen; Maria Unni Rømer; Nils Brünner; José M. A. Moreira

Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan‐ or oxaliplatin‐specific resistance profiles, with non‐reciprocal cross‐resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance‐associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.


Journal of Proteome Research | 2013

TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells.

Omid Hekmat; Stephanie Munk; Louise Fogh; Rachita Yadav; Chiara Francavilla; Heiko Horn; Sidse Ørnbjerg Würtz; Anne-Sofie Schrohl; Britt Damsgaard; Maria Unni Rømer; Kirstine Belling; Niels Frank Jensen; Irina Gromova; Dorte B. Bekker-Jensen; José M. A. Moreira; Lars Juhl Jensen; Ramneek Gupta; Ulrik Lademann; Nils Brünner; J. Olsen; Jan Stenvang

Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A, and 2B, which may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated with drug resistance or sensitivity, and drug transportation. The NetworKIN algorithm predicted the protein kinases CK2a, CDK1, PLK1, and ATM as likely candidates involved in the hyperphosphorylation of the topoisomerases. Up-regulation of protein and/or phosphorylation levels of topoisomerases in TIMP-1 high expressing cells may be part of the mechanisms by which TIMP-1 confers resistance to treatment with the widely used topoisomerase inhibitors in breast and colorectal cancer.


Nature | 2017

Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

Lasse Maretty; Jacob Malte Jensen; Bent Petersen; Jonas Andreas Sibbesen; Siyang Liu; Palle Villesen; Laurits Skov; Kirstine Belling; Christian Theil Have; Jose M. G. Izarzugaza; Marie Grosjean; Jette Bork-Jensen; Jakob Grove; Thomas Damm Als; Shujia Huang; Yuqi Chang; Ruiqi Xu; Weijian Ye; Junhua Rao; Xiaosen Guo; Jihua Sun; Hongzhi Cao; Chen Ye; Johan van Beusekom; Thomas Espeseth; Esben N. Flindt; Rune M. Friborg; Anders E. Halager; Stephanie Le Hellard; Christina M. Hultman

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Tumor Biology | 2013

TIMP1 overexpression mediates resistance of MCF-7 human breast cancer cells to fulvestrant and down-regulates progesterone receptor expression

Christina Bjerre; Lena Vinther; Kirstine Belling; Sidse Ørnbjerg Würtz; Rachita Yadav; Ulrik Lademann; Olga Rigina; Khoa Nguyen Do; Henrik J. Ditzel; Anne E. Lykkesfeldt; Jun Wang; Henrik Bjørn Nielsen; Nils Brünner; Ramneek Gupta; Anne-Sofie Schrohl; Jan Stenvang

High levels of Tissue Inhibitor of Metalloproteinases-1 (TIMP1) are associated with poor prognosis, reduced response to chemotherapy, and, potentially, also poor response to endocrine therapy in breast cancer patients. Our objective was to further investigate the hypothesis that TIMP1 is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while TIMP1 levels did not influence the sensitivity to 4-hydroxytamoxifen. An inverse correlation between expression of the progesterone receptor and TIMP1 was found, but TIMP1 levels did not correlate with estrogen receptor levels or growth-promoting effects of estrogen (estradiol, E2). Additionally, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss of progesterone receptor expression combined with fulvestrant resistance. Our findings in vitro may have clinical implications as the data suggest that high tumor levels of TIMP1 may be a predictive biomarker for reduced response to fulvestrant.


BMC Genomics | 2015

The potential role of Alu Y in the development of resistance to SN38 (Irinotecan) or oxaliplatin in colorectal cancer.

Xue Lin; Jan Stenvang; Mads Rasmussen; Shida Zhu; Niels Frank Jensen; Line Schmidt Tarpgaard; Guangxia Yang; Kirstine Belling; Claus L. Andersen; Jian Li; Lars Bolund; Nils Brünner

BackgroundIrinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.ResultsWe applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.ConclusionOur findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.


Journal of Ovarian Research | 2014

The transcriptome of corona radiata cells from individual MІІ oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women.

Marie Louise Wissing; Si Brask Sonne; David Westergaard; Kho do Nguyen; Kirstine Belling; Thomas Høst; Anne Lis Mikkelsen

BackgroundCorona radiata cells (CRCs) refer to the fraction of cumulus cells just adjacent to the oocyte. The CRCs are closely connected to the oocyte throughout maturation and their gene expression profiles might reflect oocyte quality. Polycystic ovary syndrome (PCOS) is a common cause of infertility. It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls.MethodsAll patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays.ResultsThe transcriptomes of CRCs showed no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR < 0.05). Five of the genes contributing to the up-regulated cell cycle pathways in the PCOS CRCs were selected for qRT-PCR validation in ten PCOS and ten control CRC samples. qRT-PCR confirmed significant up-regulation in PCOS CRCs of cell cycle progression genes HIST1H4C (FC = 2.7), UBE2C (FC = 2.6) and cell cycle related transcription factor E2F4 (FC = 2.5).ConclusionThe overexpression of cell cycle-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed to clarify whether the up-regulated cell cycle pathways in PCOS CRCs have any clinical implications.


PLOS ONE | 2017

The impact of the protein interactome on the syntenic structure of mammalian genomes

Isa Kristina Kirk; Nils Weinhold; Søren Brunak; Kirstine Belling; Christos A. Ouzounis

Conserved synteny denotes evolutionary preserved gene order across species. It is not well understood to which degree functional relationships between genes are preserved in syntenic blocks. Here we investigate whether protein-coding genes conserved in mammalian syntenic blocks encode gene products that serve the common functional purpose of interacting at protein level, i.e. connectivity. High connectivity among protein-protein interactions (PPIs) was only moderately associated with conserved synteny on a genome-wide scale. However, we observed a smaller subset of 3.6% of all syntenic blocks with high-confidence PPIs that had significantly higher connectivity than expected by random. Additionally, syntenic blocks with high-confidence PPIs contained significantly more chromatin loops than the remaining blocks, indicating functional preservation among these syntenic blocks. Conserved synteny is typically defined by sequence similarity. In this study, we also examined whether a functional relationship, here PPI connectivity, can identify syntenic blocks independently of orthology. While orthology-based syntenic blocks with high-confident PPIs and the connectivity-based syntenic blocks largely overlapped, the connectivity-based approach identified additional syntenic blocks that were not found by conventional sequence-based methods alone. Additionally, the connectivity-based approach enabled identification of potential orthologous genes between species. Our analyses demonstrate that subsets of syntenic blocks are associated with highly connected proteins, and that PPI connectivity can be used to detect conserved synteny even if sequence conservation drifts beyond what orthology algorithms normally can identify.

Collaboration


Dive into the Kirstine Belling's collaboration.

Top Co-Authors

Avatar

Jan Stenvang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Nils Brünner

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Søren Brunak

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Ramneek Gupta

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

David Westergaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Henrik Leffers

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge