Kirsty L. Nash
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirsty L. Nash.
Coral Reefs | 2013
Nicholas A. J. Graham; Kirsty L. Nash
The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an integral component of coral reef ecosystems, and it should be incorporated into monitoring programs and management objectives.
Coral Reefs | 2011
Nicholas A. J. Graham; Kirsty L. Nash; Johnathan T. Kool
Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.
Ecology | 2014
Kirsty L. Nash; Craig R. Allen; David G. Angeler; Chris Barichievy; Tarsha Eason; Ahjond S. Garmestani; Nicholas A. J. Graham; Dean Granholm; Melinda G. Knutson; R. John Nelson; Magnus Nyström; Craig A. Stow; Shana M. Sundstrom
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.
Ecosystems | 2013
Kirsty L. Nash; Nicholas A. J. Graham; Shaun K. Wilson; David R. Bellwood
Despite a large number of studies focusing on the complexity of coral reef habitats and the characteristics of associated fish assemblages, the relationship between reef structure and fish assemblages remains unclear. The textural discontinuity hypothesis, which proposes that multi-modal body size distributions of organisms are driven by discontinuous habitat structure, provides a theoretical basis that may explain the influence of habitat availability on associated organisms. In this study we use fractal techniques to characterize patterns of cross-scale habitat complexity, and examine how this relates to body-depth abundance distributions of associated fish assemblages over corresponding spatial scales. Our study demonstrates that: (1) Reefs formed from different underlying substrata exhibit distinct patterns of cross-scale habitat complexity; (2) The availability of potential refuges at different scales correlates with patterns in fish body depth distributions, but habitat structure is more strongly related to the relative abundance of fish in the body depth modes, rather than to the number of modes; (3) As reefs change from coral- to algal-dominated states, the complexity of the underlying reef substratum may change, presenting a more homogenous environment to associated assemblages; (4) Individual fish body depth distributions may be multi-modal, however, these distributions are not static characteristics of the fish assemblage and may change to uni-modal forms in response to changing habitat condition. In light of predicted anthropogenic changes, there is a clear need to improve our understanding of the scale of ecological relationships to anticipate future changes and vulnerabilities.
Conservation Biology | 2012
Shaun K. Wilson; Nicholas A. J. Graham; Rebecca Fisher; Jan Robinson; Kirsty L. Nash; Karen Chong-Seng; Nicholas Polunin; Riaz Aumeeruddy; Rodney Quatre
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life-form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained.
Journal of Applied Ecology | 2016
Kirsty L. Nash; Nicholas A. J. Graham; Simon Jennings; Shaun K. Wilson; David R. Bellwood
Functional redundancy contributes to resilience if different species in the same functional group respond to disturbance in different ways (response diversity). If species in a functional group perform their functional role at different spatial scales (cross-scale redundancy), they are expected to respond differently to scale-specific disturbance. Consequently, variance in the spatial scales over which species perform their functional role may provide a proxy for resilience. Coral reefs are diverse systems that provide key ecosystem services and are subject to increasing anthropogenic disturbances. Algal grazing by herbivorous fish contributes to the maintenance of coral-dominated reefs. To date, there has been little evaluation of the traits driving response diversity among herbivorous fish and how this relates to coral recovery following acute disturbances. Using body size as a proxy for the spatial scale at which fish function, we tested whether cross-scale redundancy in herbivores was an effective indicator of response diversity and coral recovery on 21 reefs monitored through a climate-induced disturbance that caused coral bleaching and widespread coral mortality. When herbivorous fish assemblages that operated over a broader range of spatial scales were present on reefs prior to disturbance, the reefs were more likely to recover to coral-dominated states after the disturbance. After the temperature-induced disturbance, the loss of small herbivores was compensated for through increases in large herbivores. This was indicative of high response diversity and drove the overall increase in herbivore biomass at recovering sites. These compensatory mechanisms were not found at sites where herbivores operated over a narrower range of spatial scales. Synthesis and applications. Cross-scale redundancy provides managers with an indicator of coral reef resilience, although the contribution of cross-scale redundancy to resilience will vary among sites. Maintaining high cross-scale redundancy at a given site requires that no size classes of reef herbivores are disproportionately depleted by fishing. Balanced harvesting, where species are all fished in proportion to their potential production, would help achieve this.
PLOS ONE | 2014
Trisha L. Spanbauer; Craig R. Allen; David G. Angeler; Tarsha Eason; Sherilyn C. Fritz; Ahjond S. Garmestani; Kirsty L. Nash; Jeffery R. Stone
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.
PLOS ONE | 2014
Nicholas A. J. Graham; Karen Chong-Seng; Cindy Huchery; Fraser A. Januchowski-Hartley; Kirsty L. Nash
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.
Journal of Applied Ecology | 2016
David G. Angeler; Craig R. Allen; Chris Barichievy; Tarsha Eason; Ahjond S. Garmestani; Nicholas A. J. Graham; Dean Granholm; Lance Gunderson; Melinda G. Knutson; Kirsty L. Nash; R. John Nelson; Magnus Nyström; Trisha L. Spanbauer; Craig A. Stow; Shana M. Sundstrom
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.
Ecological Applications | 2013
Kirsty L. Nash; Nicholas A. J. Graham; David R. Bellwood
The function of species has been recognized as critical for the maintenance of ecosystems within desired states. However, there are still considerable gaps in our knowledge of interspecific differences in the functional roles of organisms, particularly with regard to the spatial scales over which functional impact is exerted. This has implications for the delivery of function and the maintenance of ecosystem processes. In this study we assessed the allometric relationship between foraging movements and fish body length at three sites, for 20 species of herbivorous reef fishes within four different functional groups: browsers, farmers, grazer/ detritivores, and scraper/excavators. The relationship between vulnerability of species to fishing and their scale of foraging was also examined. We present empirical evidence of the strong, positive, log-linear relationship between the scale of foraging movement and fish body length. This relationship was consistent among sites and between the two different movement metrics used. Phylogeny did not affect these results. Functional groups foraged over contrasting ranges of spatial scales; for example, scraper/excavators performed their role over a wide range of scales, whereas browsers were represented by few species and operated over a narrow range of scales. Overfishing is likely not only to remove species operating at large scales, but also to remove the browser group as a whole. Large fishes typically have a significant role in removing algae on reefs, and browsers are key to controlling macroalgae and reversing shifts to macroalgal-dominated states. This vulnerability to exploitation has serious consequences for the ability of fish assemblages to deliver their functional role in the face of anthropogenic impacts. However, identification of the scales at which herbivorous fish assemblages are susceptible to fishing provides managers with critical knowledge to design management strategies to support coral-dominated reefs by maintaining function at the spatial scales at which vulnerable species operate.