Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirtikumar C. Badgujar is active.

Publication


Featured researches published by Kirtikumar C. Badgujar.


Bioresource Technology | 2015

Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented.


Enzyme and Microbial Technology | 2014

Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study.

Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

This work reports the use of new support for immobilization of lipase Burkholderia cepacia (BCL) matrix made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Initially lipase from various microbial sources and immobilization support composition was screened to obtain a robust biocatalyst. Among various biocatalysts preparation, the PLA:PVA:CH:BCL (1:6:1:2) was worked as a robust biocatalyst for the citronellyl acetate synthesis. Various reaction parameters were studied in detail to obtain the suitable reaction conditions for model citronellyl acetate synthesis reaction. Various kinetic parameters such as r(max), K(i(citronellol)), K(m(citronellol)), K(m(vinyl acetate)) were determined using non-linear regression analysis for the ternary complex as well as bi-bi ping-pong mechanism. The experimental results and kinetic study showed that citronellyl acetate synthesis catalyzed by immobilized lipase BCL followed the ternary complex mechanism with inhibition by alcohol (citronellol). The energy of activation for citronellyl acetate synthesis was found to be lower for immobilized lipase (8.9 kcal/mol) than aggregated lipase (14.8 kcal/mol) enzyme. The developed biocatalyst showed four to fivefold higher catalytic activity and excellent recyclability (up to six cycles) than the aggregated lipase.


Journal of Physical Chemistry B | 2014

Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose

Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

In the present study, we have synthesized a biocompatible hybrid carrier of hypromellose (HY) and poly(vinyl alcohol) (PVA) for immobilization of Burkholderia cepacia lipase (BCL). The immobilized biocatalyst HY:PVA:BCL was subjected to determination of half-life time (τ) and deactivation rate constant (K(D)) in various organic solvents. Biocatalyst showed higher τ-value in a nonpolar solvent like cyclohexane (822 h) as compared to that of a polar solvent such as acetone (347 h), which signifies better compatibility of biocatalyst in the nonpolar solvents. Furthermore, the K(D)-value was found to be less in cyclohexane (0.843 × 10(-3)) as compared to acetone (1.997 × 10(-3)), indicating better stability in the nonpolar solvents. Immobilized-BCL (35 mg) was sufficient to achieve 99% conversion of phenethyl butyrate (natural constituent of essential oils and has wide industrial applications) using phenethyl alcohol (2 mmol) and vinyl butyrate (6 mmol) at 44 °C in 3 h. The activation energy (E(a)) was found to be lower for immobilized-BCL than crude-BCL, indicating better catalytic efficiency of immobilized lipase BCL. The immobilized-BCL reported 6-fold superior biocatalytic activity and 8 times recyclability as compared to crude-BCL. Improved catalytic activity of immobilized enzyme in nonpolar media was also supported by thermodynamic activation parameters such as enthalpy (ΔH(⧧)), entropy (ΔS(⧧)) and Gibbs free energy (ΔG(⧧)) study, which showed that phenethyl butyrate synthesis catalyzed by immobilized-BCL was feasible as compared to crude-BCL. The present work explains a thermodynamic investigation and superior biocatalytic activity for phenethyl butyrate synthesis using biocompatible immobilized HY:PVA:BCL in nonaqueous media for the first time.


Bioprocess and Biosystems Engineering | 2016

Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition.

Kirtikumar C. Badgujar; Poorna A. Pai; Bhalchandra M. Bhanage

AbstractThe present work reports the use of biocatalyst and ultrasound for greener synthesis of cinnamyl propionate. The lipase Pseudomonas cepacia was immobilized on a copolymer of hydroxypropyl methyl cellulose and polyvinyl alcohol. This biocatalyst was u sed for ultrasound-assisted synthesis of cinnamyl propionate with the detailed optimization of various reaction parameters. Besides this, protocol was extended to synthesize various industrially important propionate esters. In addition to this, different enzyme-kinetic parameters such as rmax and Km(vinyl propionate),Km(cinnamyl alcohol) and Ki(cinnamyl alcohol) were studied which presented ordered bi–bi mechanism with an inhibition by cinnamyl alcohol. The developed biocatalyst demonstrated enhancement in catalytic activity and recyclability up to five recycles. Moreover, the biocatalyst was tested to investigate the effects of sonication via various characterization techniques such as scanning electron microscopy, thermogravimetry, and water content analysis.


RSC Advances | 2015

Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: characterization and activity–stability studies with potential biocatalytic applications

Kirtikumar C. Badgujar; Takehiko Sasaki; Bhalchandra M. Bhanage

In the present study, we have synthesized lipase-nano-bio-conjugates via immobilization of various lipases on multiwall carbon nano-tubes (MCNT), in order to construct an efficient and recyclable biocatalytic system. In a screening study lipase Pseudomonas fluorescens (PFL) acted as an efficient biocatalyst (lipase-nano-bio-conjugates) which showed higher retention of lipase activity and protein loading. Consequently the immobilization support : lipase (MCNT : PFL) composition was screened in which MCNT : PFL (2 : 1) was calculated as a robust biocatalyst composition which showed higher activity retention and protein loading. This nano-bio-conjugate was then characterized in detail with physical and biochemical techniques using SEM, TEM, FTIR, Km, Vmax, catalytic efficiency and (%) water content analysis. This developed biocatalyst was further used for practical biocatalytic applications such as O-acylation reactions. Various reaction parameters were optimized in detail like reactant molar ratio (2 : 3.5), solvent, MCNT : PFL biocatalyst amount (36 mg), temperature (50 °C) etc. The developed biocatalytic protocol was then extended to synthesize several (twenty-two) industrially important acylated moieties with an excellent yield, these products are well characterized by 1HNMR, 13CNMR and GCMS analysis. Moreover in the present study, we have reviewed the potential industrial applications of various synthesized compounds. Also, we have studied the thermodynamic aspect which demonstrated more feasibility of use of immobilized MCNT : PFL lipase over free lipase. Interestingly, immobilized MCNT : PFL lipase showed 2.3 fold higher catalytic activity than free PFL. Besides this, the biocatalyst was efficiently recycled for up to five cycles. Thus the present protocol demonstrated, (i) synthesis of nano-bio-conjugates as a bio-catalyst, (ii) detailed physical-biochemical characterization of nano-bio-conjugates, (iii) optimization of the biocatalytic protocol (iv) practical biocatalytic applications along with a mechanistic study (v) a thermodynamic feasibility study and (vi) recyclability study.


Carbohydrate Polymers | 2015

Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications

Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

In the present study, we have synthesized biocompatible hybrid blend of cellulosic polymers of hydroxypropyl-methyl-cellulose (HPMC) and chitosan (CHY) for the immobilization of Candida rugosa lipase (CRL). The immobilized biocatalyst HPMC:CHY:CRL was subjected for characterization such as SEM, TGA, water content analysis, lipase activity, specific activity and protein content analysis. The kinetic parameter study (Rmax/Km) demonstrated improved biocatalytic activity of lipase after immobilization on carbohydrate co-polymers of HPMC:CHY. This biocatalyst was then employed to study practical biocatalytic applications for kinetic resolution which provided 50% conversion and >94% enantiomeric excess of substrate/product (ees/eep). The protocol demonstrated excellent recyclability upto five cycles. Finally, we studied influence of immobilization on cellulosic polymers for substrate, structure and reactivity for kinetic resolution. Hence, we investigated R0 (initial reaction rate), E-value (enantioselectivity) and Ea (activation energy). This study confirms that, lipase immobilized on carbohydrate polymers had 3-4 folds higher biocatalytic activity as compared to crude CRL.


RSC Advances | 2015

Kinetic resolution of secondary alcohols with Burkholderia cepacia lipase immobilized on a biodegradable ternary blend polymer matrix as a highly efficient and heterogeneous recyclable biocatalyst

Ganesh V. More; Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

The present work reports a highly efficient and biocatalytic heterogeneous protocol for kinetic resolution (KR) of racemic secondary alcohols with vinyl acetate as an acyl donor, using the biocatalyst Burkholderia cepacia lipase (BCL) immobilized on a biodegradable ternary blend support through polylactic acid (PLA)/polyvinyl alcohol (PVA)/chitosan (CHI); (PLA/PVA/CHI–BCL). The KR reaction with various substituted aromatic, heterocyclic racemic secondary alcohols gave enantiomerically pure alcohol and its enantioenriched acetate derivatives with high conversion (45–50%) and excellent enantiomeric excess (up to 99% ee) at optimized reaction conditions. The reaction works under mild conditions using simple and inexpensive starting materials such as racemic alcohols, vinyl acetate, and immobilized biocatalyst. The given protocol provides excellent recyclability with good yield and enantiomeric excess values up to the studied range of five cycles. The resultant products were characterized with the help of different analytical techniques such as 1H and 13C-NMR, chiral HPLC column, polarimeter, IR and GC-MS.


Bioprocess and Biosystems Engineering | 2017

Immobilization of Rhizomucor miehei lipase on a polymeric film for synthesis of important fatty acid esters: kinetics and application studies

Vivek C. Badgujar; Kirtikumar C. Badgujar; Pravin M. Yeole; Bhalchandra M. Bhanage

The present work deals with the designing of biocompatible hybrid blend of cellulosic copolymers made of hydroxypropyl methylcellulose (HMC) and chitosan (CHI) for immobilization of Rhizomucor miehei lipase (RML), in order to construct the robust biocatalytic system to synthesize industrially important dodecanoate compounds (fatty acid esters). The present biocatalyst HMC:CHI:RML was characterized in detail by various physical and biochemical methods and subsequently applied for the synthesis of fatty acid esters. The protocol was optimized in detail with kinetic parameters which provides excellent % conversion, and further we have synthesized fifteen industrially important compounds which have wide potential for commercial applications. The immobilized lipase HMC:CHI:RML offered four- to eightfold higher conversion and biocatalytic activity as compared to crude lipase. Besides this, recyclability study was also performed to assess economic and industrial viability.


Bioprocess and Biosystems Engineering | 2017

Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier

Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as Km, Vmax, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.


Enzyme and Microbial Technology | 2016

Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate

Ashwini C. Mathpati; Kirtikumar C. Badgujar; Bhalchandra M. Bhanage

The present work deals with the kinetic modeling and docking study for the furfuryl acetate synthesis using immobilized Burkholderia cepacia (BCL) lipase. Initially various lipases were immobilized on hydroxypropyl methyl cellulose (HPMC) and poly vinyl alcohol (PVA) base hybrid polymer matrix. After screening of various immobilized biocatalysts, HPMC:PVA:BCL was found to be a robust biocatalyst. Various reaction conditions were optimized using response surface methodology (RSM) based on a four-factor-three-level Box-Behnken design. The optimal conditions were obtained at molar ratio of 1:2 of furfuryl alcohol to acyl donor, temperature 50°C with catalyst loading of 30mg in 3mL of non-aqueous media toluene. Under these conditions 99.98% yield was obtained in 3h. The Arrhenius plot showed that the activation energy for furfuryl acetate synthesis was 10.68kcal/mol. The kinetics of reaction was studied close to optimized conditions which obey order bi-bi model. Molecular docking study was carried out to understand the active site of BCL which is responsible for the reaction. It was observed that the reaction proceeds via acylation of the active serine of BCL and demonstrating strong hydrogen bond between the substrate and histidine site. The catalyst recyclability study was carried up to five cycles.

Collaboration


Dive into the Kirtikumar C. Badgujar's collaboration.

Top Co-Authors

Avatar

Bhalchandra M. Bhanage

Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Ashwini C. Mathpati

Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kishor P. Dhake

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge