Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kisuk Yang is active.

Publication


Featured researches published by Kisuk Yang.


Biomaterials | 2012

Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering

Kisuk Yang; Jung Seung Lee; Yu Bin Lee; Heungsoo Shin; Soong Ho Um; Jeong Beom Kim; Kook In Park; Haeshin Lee; Seung Woo Cho

Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.


Biomacromolecules | 2013

Polydopamine-Assisted Osteoinductive Peptide Immobilization of Polymer Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells

Eunkyung Ko; Kisuk Yang; Jisoo Shin; Seung-Woo Cho

Immobilization of osteoinductive molecules, including growth factors or peptides, on polymer scaffolds is critical for improving stem cell-mediated bone tissue engineering. Such molecules provide osteogenesis-stimulating signals for stem cells. Typical methods used for polymeric scaffold modification (e.g., chemical conjugation or physical adsorption), however, have limitations (e.g., multistep, complicated procedures, material denaturation, batch-to-batch inconsistency, and inadequate conjugation) that diminish the overall efficiency of the process. Therefore, in this study, we report a biologically inspired strategy to prepare functional polymer scaffolds that efficiently regulate the osteogenic differentiation of human adipose-derived stem cells (hADSCs). Polymerization of dopamine (DA), a repeated motif observed in mussel adhesive protein, under alkaline pH conditions, allows for coating of a polydopamine (pDA) layer onto polymer scaffolds. Our study demonstrates that predeposition of a pDA layer facilitates highly efficient, simple immobilization of peptides derived from osteogenic growth factor (bone morphogenetic protein-2; BMP-2) on poly(lactic-co-glycolic acid) (PLGA) scaffolds via catechol chemistry. The BMP-2 peptide-immobilized PLGA scaffolds greatly enhanced in vitro osteogenic differentiation and calcium mineralization of hADSCs using either osteogenic medium or nonosteogenic medium. Furthermore, transplantation of hADSCs using pDA-BMP-2-PLGA scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Therefore, pDA-mediated catechol functionalization would be a simple and effective method for developing tissue engineering scaffolds exhibiting enhanced osteoinductivity. To the best of our knowledge, this is the first study demonstrating that pDA-mediated surface modification of polymer scaffolds potentiates the regenerative capacity of human stem cells for healing tissue defect in vivo.


ACS Applied Materials & Interfaces | 2013

Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells

Kisuk Yang; Kyuhwan Jung; Eunkyung Ko; Kook In Park; Jinseok Kim; Seung-Woo Cho

Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300-300 nm groove ridges and 300-300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.


Biomaterials | 2013

BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells.

Mun-Jung Kim; Bora Lee; Kisuk Yang; Junyong Park; Seokwoo Jeon; Soong Ho Um; Dong Ik Kim; Sung Gap Im; Seung-Woo Cho

A variety of biophysical and biochemical factors control stem cell differentiation. In this study, we developed a nanopatterned substrate platform to surface immobilize osteoinductive bone morphogenetic protein-2 (BMP-2) peptides. Specifically, polyurethane acrylate (PUA) substrates with nanometer-scale groove- and dot-shaped topography were fabricated. The nanopatterned PUA surface was uniformly coated with poly(glycidyl methacrylate) (pGMA) by initiated chemical vapor deposition (iCVD) followed by covalent immobilization of BMP-2 peptides. This approach resulted in much more efficient BMP-2 peptide immobilization than physical adsorption. The combined effects of biochemical signals from BMP-2 peptides and nanotopographical stimulation on osteogenic differentiation of hMSCs were examined in culture with and without soluble osteogenic factors. Results of Alizarin Red S staining, immunostaining, and quantitative real-time polymerase chain reaction revealed that hMSCs cultured on nanopatterned surfaces with immobilized BMP-2 peptides exhibited greater potential for osteogenic differentiation than hMSCs on a flat surface. Furthermore, the nanopatterned substrates with BMP-2 peptides directed osteogenic differentiation of hMSCs even without osteogenesis soluble inducing factors. Substrates with nanotopography and bioactive signals that induce differentiation of stem cells towards specific lineages could be used to develop functional stem cell culture substrates and tissue engineered scaffolds for therapeutic applications.


Biomaterials | 2014

Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering

Hyun-Ji Park; Seung Jung Yu; Kisuk Yang; Yoonhee Jin; Ann-Na Cho; Bora Lee; Hee Seok Yang; Sung Gap Im; Seung-Woo Cho

Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.


Lab on a Chip | 2012

Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device

Sewoon Han; Kisuk Yang; Yoojin Shin; Jung Seung Lee; Roger D. Kamm; Seok Chung; Seung Woo Cho

Here, we report a unique method to quantify the effects of in vivo-like extracellular matrix (ECM) for guiding differentiation of neural stem cells (NSCs) in three-dimensional (3D) microenvironments using quantitative real-time polymerase chain reaction (qRT-PCR). We successfully monitored and quantified differentiation of NSCs in small volume ECMs and found that differentiation of NSCs, especially those differentiating towards neuronal and oligodendrocytic lineages, is significantly enhanced by 3D microenvironments reconstituted in the microfluidic channels.


Advanced Materials | 2014

Switchable Water‐Adhesive, Superhydrophobic Palladium‐Layered Silicon Nanowires Potentiate the Angiogenic Efficacy of Human Stem Cell Spheroids

Jungmok Seo; Jung Seung Lee; Kihong Lee; Dayeong Kim; Kisuk Yang; Sera Shin; Chandreswar Mahata; Hwae Bong Jung; Wooyoung Lee; Seung Woo Cho; Taeyoon Lee

A switchable water-adhesive, super-hydrophobic nanowire surface is developed for the formation of functional stem cell spheroids. The sizes of hADSC spheroids are readily controllable on the surface. Our surface increases cell-cell and cell-matrix interaction, which improves viability and paracrine secretion of the spheroids. Accordingly, the hADSC spheroids produced on the surface exhibit significantly enhanced angiogenic efficacy.


Biomacromolecules | 2016

Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects

Hyun Ji Park; Yoonhee Jin; Jisoo Shin; Kisuk Yang; Chang-Hyun Lee; Hee Seok Yang; Seung Woo Cho

Over the last few decades, stem cell therapies have been highlighted for their potential to heal damaged tissue and aid in tissue reconstruction. However, materials used to deliver and support implanted cells often display limited efficacy, which has resulted in delaying translation of stem cell therapies into the clinic. In our previous work, we developed a mussel-inspired, catechol-functionalized hyaluronic acid (HA-CA) hydrogel that enabled effective cell transplantation due to its improved biocompatibility and strong tissue adhesiveness. The present study was performed to further expand the utility of HA-CA hydrogels for use in stem cell therapies to treat more clinically relevant tissue defect models. Specifically, we utilized HA-CA hydrogels to potentiate stem cell-mediated angiogenesis and osteogenesis in two tissue defect models: critical limb ischemia and critical-sized calvarial bone defect. HA-CA hydrogels were found to be less cytotoxic to human adipose-derived stem cells (hADSCs) in vitro compared to conventional photopolymerized HA hydrogels. HA-CA hydrogels also retained the angiogenic functionality of hADSCs and supported osteogenic differentiation of hADSCs. Because of their superior tissue adhesiveness, HA-CA hydrogels were able to mediate efficient engraftment of hADSCs into the defect regions. When compared to photopolymerized HA hydrogels, HA-CA hydrogels significantly enhanced hADSC-mediated therapeutic angiogenesis (promoted capillary/arteriole formation, improved vascular perfusion, attenuated ischemic muscle degeneration/fibrosis, and reduced limb amputation) and bone reconstruction (mineralized bone formation, enhanced osteogenic marker expression, and collagen deposition). This study proves the feasibility of using bioinspired HA-CA hydrogels as functional biomaterials for improved tissue regeneration in critical tissue defects.


Biomaterials | 2015

Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions

Hyun Ji Park; Kisuk Yang; Mun Jung Kim; Jiho Jang; Mihyun Lee; Dong-Wook Kim; Haeshin Lee; Seung Woo Cho

Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues, difficulty in quality control, and high expense. Thus, feeder-free, chemically defined synthetic platforms have been developed, but are mostly confined to typical polystyrene culture plates. Here, we report a chemically defined, material-independent, bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion, proliferation, and colony formation of hPSCs via enhanced focal adhesion, cell-cell interaction, and biophysical signals, providing a chemically defined, xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices.


Macromolecular Bioscience | 2015

Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells

Kisuk Yang; Esther Park; Jong Seung Lee; Il Sun Kim; Kwonho Hong; Kook In Park; Seung Woo Cho; Hee Seok Yang

Biophysical cues provided by nanotopographical surfaces have been used as stimuli to guide neurite extension and regulate neural stem cell (NSC) differentiation. Here, we fabricated biodegradable polymer substrates with nanoscale topography for enhancing human NSC (hNSC) differentiation and guided neurite outgrowth. The substrate was constructed from biodegradable poly(lactic-co-glycolic acid) (PLGA) using solvent-assisted capillary force lithography. We found that precoating with 3,4-dihydroxy-l-phenylalanine (DOPA) facilitated the immobilization of poly-l-lysine and fibronectin on PLGA substrates via bio-inspired catechol chemistry. The DOPA-coated nanopatterned substrates directed cellular alignment along the patterned grooves by contact guidance, leading to enhanced focal adhesion, skeletal protein reorganization, and neuronal differentiation of hNSCs as indicated by highly extended neurites from cell bodies and increased expression of neuronal markers (Tuj1 and MAP2). The addition of nerve growth factor further enhanced neuronal differentiation of hNSCs, indicating a synergistic effect of biophysical and biochemical cues on NSC differentiation. These bio-inspired PLGA nanopatterned substrates could potentially be used as implantable biomaterials for improving the efficacy of hNSCs in treating neurodegenerative diseases.

Collaboration


Dive into the Kisuk Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge