Kit Yan Chan
Curtin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kit Yan Chan.
systems man and cybernetics | 2008
Sai Ho Ling; Herbert Ho-Ching Iu; Kit Yan Chan; Hak-Keung Lam; Benny C. W. Yeung; Frank H. F. Leung
A new hybrid particle swarm optimization (PSO) that incorporates a wavelet-theory-based mutation operation is proposed. It applies the wavelet theory to enhance the PSO in exploring the solution space more effectively for a better solution. A suite of benchmark test functions and three industrial applications (solving the load flow problems, modeling the development of fluid dispensing for electronic packaging, and designing a neural-network-based controller) are employed to evaluate the performance and the applicability of the proposed method. Experimental results empirically show that the proposed method significantly outperforms the existing methods in terms of convergence speed, solution quality, and solution stability.
IEEE Transactions on Industrial Electronics | 2008
Sai Ho Ling; Herbert Ho-Ching Iu; Frank H. F. Leung; Kit Yan Chan
An improved hybrid particle swarm optimization (PSO)-based wavelet neural network (WNN) for modeling the development of fluid dispensing for electronic packaging (MFD-EP) is presented in this paper. In modeling the fluid dispensing process, it is important to understand the process behavior as well as determine the optimum operating conditions of the process for a high-yield, low-cost, and robust operation. Modeling the fluid dispensing process is a complex nonlinear problem. This kind of problem is suitable to be solved by applying a neural network. Among the different kinds of neural networks, the WNN is a good choice to solve the problem. In the proposed WNN, the translation parameters are variables depending on the network inputs. Due to the variable translation parameters, the network becomes an adaptive one that provides better performance and increased learning ability than conventional WNNs. An improved hybrid PSO is applied to train the parameters of the proposed WNN. The proposed hybrid PSO incorporates a wavelet-theory-based mutation operation. It applies the wavelet theory to enhance the PSO in more effectively exploring the solution space to reach a better solution. A case study of MFD-EP is employed to demonstrate the effectiveness of the proposed method.
IEEE Transactions on Intelligent Transportation Systems | 2012
Kit Yan Chan; Tharam S. Dillon; Jaipal Singh; Elizabeth Chang
This paper proposes a novel neural network (NN) training method that employs the hybrid exponential smoothing method and the Levenberg-Marquardt (LM) algorithm, which aims to improve the generalization capabilities of previously used methods for training NNs for short-term traffic flow forecasting. The approach uses exponential smoothing to preprocess traffic flow data by removing the lumpiness from collected traffic flow data, before employing a variant of the LM algorithm to train the NN weights of an NN model. This approach aids NN training, as the preprocessed traffic flow data are more smooth and continuous than the original unprocessed traffic flow data. The proposed method was evaluated by forecasting short-term traffic flow conditions on the Mitchell freeway in Western Australia. With regard to the generalization capabilities for short-term traffic flow forecasting, the NN models developed using the proposed approach outperform those that are developed based on the alternative tested algorithms, which are particularly designed either for short-term traffic flow forecasting or for enhancing generalization capabilities of NNs.
Expert Systems With Applications | 2009
C. K. Kwong; T. C. Wong; Kit Yan Chan
When developing new products it is important for design teams to understand customer perceptions of consumer products because the success of such products is heavily dependent upon the associated customer satisfaction level. The chance of a new products success in a marketplace is higher if users are satisfied with it. In this study, a new methodology of generating customer satisfaction models using a neuro-fuzzy approach is proposed. In contrast to previous research, non-linear and explicit customer satisfaction models can be developed with the use of the proposed methodology. An example of notebook computer design is used to illustrate the methodology. The proposed methodology was measured against the benchmark of statistical regression to determine its effectiveness. Experimental results suggested that the proposed approach outperformed the statistical regression method in terms of mean absolute errors and variance of errors.
IEEE Transactions on Industrial Informatics | 2011
Kit Yan Chan; Tharam S. Dillon; Che Kit Kwong
Modeling of manufacturing processes is important because it enables manufacturers to understand the process behavior and determine the optimum operating conditions of the process for a high yield, low cost and robust operation. However, existing techniques in modeling manufacturing processes cannot address the whole common issues in developing models for manufacturing processes: a) manufacturing processes are usually nonlinear in nature; b) a small amount of experimental data is only available for developing manufacturing process models; c) outliers often exist in experimental data; d) explicit models in a polynomial form are often preferred by manufacturing process engineers; and e) models with satisfactory prediction accuracy are required. In this paper, a modeling algorithm, namely, the particle swarm optimization-based fuzzy regression (PSO-FR) approach, is proposed to generate fuzzy nonlinear regression models, which seek to address all of the common issues in developing models for manufacturing processes. The PSO-FR first employs the operations of particle swarm optimization to generate the structures of the process models in nonlinear polynomial form, and then it employs a fuzzy coefficient generator to identify outliers in the original experimental data. Fuzzy coefficients of the process models are determined by the fuzzy coefficient generator in which the experimental data excluding the outliers is used. The effectiveness of the PSO-FR approach is evaluated by modeling the manufacturing process liquid epoxy molding process which is a commonly used technology for microchip encapsulation in electronic packaging. Results were compared with those based on the commonly used modeling methods. It was found that PSO-FR can achieve better goodness-of-fitness than other methods. Also, the prediction accuracy of the model developed based on the PSO-FR is better than the other methods.
IEEE Transactions on Industrial Electronics | 2013
Kit Yan Chan; Tharam S. Dillon; Elizabeth Chang
On-road sensor systems installed on freeways are used to capture traffic flow data for short-term traffic flow predictors for traffic management, to reduce traffic congestion and improve vehicular mobility. This paper intends to tackle the impractical time-invariant assumptions which underlie the methods currently used to develop short-term traffic flow predictors: 1) the characteristics of current data captured by on-road sensors are assumed to be time invariant with respect to those of the historical data, which is used to developed short-term traffic flow predictors; and 2) the configuration of the on-road sensor systems is assumed to be time-invariant. In fact, both assumptions are impractical in the real world, as the current traffic flow characteristics can be very different from the historical ones, and also the on-road sensor systems are time varying in nature due to damaged sensors or component wear. Therefore, misleading forecasting results are likely to be produced when short-term traffic flow predictors are designed using these two time-invariant assumptions. To tackle these time-invariant assumptions, an intelligent particle swarm optimization (IPSO) algorithm is proposed to develop short-term traffic flow predictors by integrating the mechanisms of PSO, neural network and fuzzy inference system, to adapt to the time-varying traffic flow characteristics and the time-varying configurations of the on-road sensor systems. The proposed IPSO was applied to forecast traffic flow conditions on a section of freeway in Western Australia, whose traffic flow information can be captured on-line by the on-road sensor system. These results clearly demonstrate the effectiveness of using the proposed IPSO for real-time traffic flow forecasting based on traffic flow data captured by on-road sensor systems.
Applied Soft Computing | 2011
Kit Yan Chan; C. K. Kwong; Tharam S. Dillon; Y. C. Tsim
Genetic programming (GP) has demonstrated as an effective approach in polynomial modeling of manufacturing processes. However, polynomial models with redundant terms generated by GP may depict overfitting, while the developed models have good accuracy on trained data sets but relatively poor accuracy on testing data sets. In the literature, approaches of avoiding overfitting in GP are handled by limiting the number of terms in polynomial models. However, those approaches cannot guarantee terms in polynomial models produced by GP are statistically significant to manufacturing processes. In this paper, a statistical method, backward elimination (BE), is proposed to incorporate with GP, in order to eliminate insignificant terms in polynomial models. The performance of the proposed GP has been evaluated by modeling three real-world manufacturing processes, epoxy dispenser for electronic packaging, solder paste dispenser for electronic manufacturing, and punch press system for leadframe downset in IC packaging. Empirical results show that insignificant terms in the polynomial models can be eliminated by the proposed GP and also the polynomial models generated by the proposed GP can achieve results with better predictions than the other commonly used existent methods, which are commonly used in GP for avoiding overfitting in polynomial modeling.
Journal of Engineering Design | 2011
Kit Yan Chan; C. K. Kwong; Tharam S. Dillon; K. Fung
Affective product design aims at incorporating customers’ affective needs into design variables of a new product so as to optimise customers’ affective satisfaction. Faced with fierce competition in marketplaces, companies try to determine the settings in order to maximise customers’ affective satisfaction with products. To achieve this, a set of customer survey data is required in order to develop a model which relates customers’ affective responses to the design variables of a new product. Customer survey data are usually fuzzy since human feeling is usually fuzzy, and the relationship between customers’ affective responses and design variables is usually nonlinear. However, previous research on modelling the relationship between affective response and design variables has not addressed the development of explicit models involving either nonlinearity or fuzziness. In this paper, an intelligent fuzzy regression approach is proposed to generate models which represent this nonlinear and fuzzy relationship between affective responses and design variables. In order to do this, we extend the existing work on fuzzy regression by first utilising an evolutionary algorithm to construct branches of a tree representing structures of a model where the nonlinearity of the model can be addressed. The fuzzy regression algorithm is then used to determine the fuzzy coefficients of the model. The models thus developed are explicit, and consist of fuzzy, nonlinear terms which relate affective responses to design variables. A case study of affective product design of mobile phones is used to illustrate the proposed method.
Journal of Engineering Design | 2010
C. K. Kwong; Y. Chen; Kit Yan Chan; X. Luo
In quality function deployment (QFD), information regarding relationships between customer requirements and engineering specifications, and among various engineering specifications, is commonly both qualitative and quantitative. Therefore, modelling the relationships in QFD always involves both fuzziness and randomness. However, previous research only addressed fuzziness and randomness independently of one another. To take both the fuzziness and randomness into account while modelling the relationships in QFD, fuzzy least-squares regression (FLSR) could be considered. However, the existing FLSR is only limited to developing models based on fuzzy type observed data and modelling relationships in QFD often involves both crisp type and fuzzy type observed data. In this article, a generalised FLSR approach to modelling relationships in QFD is described that can be used to develop models of the relationships based on fuzzy observations and/or crisp observations. A case study of a packing machine design is used in this article to illustrate the proposed approach.
International Journal of Production Research | 2010
Kit Yan Chan; C. K. Kwong; Y. C. Tsim
Fuzzy regression has demonstrated its ability to model manufacturing processes in which the processes have fuzziness and the number of experimental data sets for modelling them is limited. However, previous studies only yield fuzzy linear regression based process models in which variables or higher order terms are not addressed. In fact, it is widely recognised that behaviours of manufacturing processes do often carry interactions among variables or higher order terms. In this paper, a genetic programming based fuzzy regression GP-FR, is proposed for modelling manufacturing processes. The proposed method uses the general outcome of GP to construct models the structure of which is based on a tree representation, which could carry interaction and higher order terms. Then, a fuzzy linear regression algorithm is used to estimate the contributions and the fuzziness of each branch of the tree, so as to determine the fuzzy parameters of the genetic programming based fuzzy regression model. To evaluate the effectiveness of the proposed method for process modelling, it was applied to the modelling of a solder paste dispensing process. Results were compared with those based on statistical regression and fuzzy linear regression. It was found that the proposed method can achieve better goodness-of-fitness than the other two methods. Also the prediction accuracy of the model developed based on GP-FR is better than those based on the other two methods.