Kitchener D. Wilson
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kitchener D. Wilson.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ning Sun; Nicholas J. Panetta; Deepak M. Gupta; Kitchener D. Wilson; Andrew L. Lee; Fangjun Jia; Shijun Hu; Athena M. Cherry; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu
Ectopic expression of transcription factors can reprogram somatic cells to a pluripotent state. However, most of the studies used skin fibroblasts as the starting population for reprogramming, which usually take weeks for expansion from a single biopsy. We show here that induced pluripotent stem (iPS) cells can be generated from adult human adipose stem cells (hASCs) freshly isolated from patients. Furthermore, iPS cells can be readily derived from adult hASCs in a feeder-free condition, thereby eliminating potential variability caused by using feeder cells. hASCs can be safely and readily isolated from adult humans in large quantities without extended time for expansion, are easy to maintain in culture, and therefore represent an ideal autologous source of cells for generating individual-specific iPS cells.
PLOS ONE | 2010
Zhumur Ghosh; Kitchener D. Wilson; Yi Wu; Shijun Hu; Thomas Quertermous; Joseph C. Wu
Human induced pluripotent stem cells (hiPSCs) generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs), as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as “embryonic stem cell-like”, these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the “distance” between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.
Journal of Clinical Investigation | 2011
Kazim H. Narsinh; Ning Sun; Veronica Sanchez-Freire; Andrew S. Lee; Patricia E. de Almeida; Shijun Hu; Taha A. Jan; Kitchener D. Wilson; Denise Leong; Jarrett Rosenberg; Mylene Yao; Robert C. Robbins; Joseph C. Wu
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are promising candidate cell sources for regenerative medicine. However, despite the common ability of hiPSCs and hESCs to differentiate into all 3 germ layers, their functional equivalence at the single cell level remains to be demonstrated. Moreover, single cell heterogeneity amongst stem cell populations may underlie important cell fate decisions. Here, we used single cell analysis to resolve the gene expression profiles of 362 hiPSCs and hESCs for an array of 42 genes that characterize the pluripotent and differentiated states. Comparison between single hESCs and single hiPSCs revealed markedly more heterogeneity in gene expression levels in the hiPSCs, suggesting that hiPSCs occupy an alternate, less stable pluripotent state. hiPSCs also displayed slower growth kinetics and impaired directed differentiation as compared with hESCs. Our results suggest that caution should be exercised before assuming that hiPSCs occupy a pluripotent state equivalent to that of hESCs, particularly when producing differentiated cells for regenerative medicine aims.
PLOS ONE | 2008
Feng Cao; Roger A. Wagner; Kitchener D. Wilson; Xiaoyan Xie; Ji-Dong Fu; Micha Drukker; Andrew Lee; Ronald A. Li; Sanjiv S. Gambhir; Irving L. Weissman; Robert C. Robbins; Joseph C. Wu
Human embryonic stem cells (hESCs) can serve as a potentially limitless source of cells that may enable regeneration of diseased tissue and organs. Here we investigate the use of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in promoting recovery from cardiac ischemia reperfusion injury in a mouse model. Using microarrays, we have described the hESC-CM transcriptome within the spectrum of changes that occur between undifferentiated hESCs and fetal heart cells. The hESC-CMs expressed cardiomyocyte genes at levels similar to those found in 20-week fetal heart cells, making this population a good source of potential replacement cells in vivo. Echocardiographic studies showed significant improvement in heart function by 8 weeks after transplantation. Finally, we demonstrate long-term engraftment of hESC-CMs by using molecular imaging to track cellular localization, survival, and proliferation in vivo. Taken together, global gene expression profiling of hESC differentiation enables a systems-based analysis of the biological processes, networks, and genes that drive hESC fate decisions, and studies such as this will serve as the foundation for future clinical applications of stem cell therapies.
Human Molecular Genetics | 2011
Sarita Panula; Jose V. Medrano; Kehkooi Kee; Rosita Bergström; Ha Nam Nguyen; Blake Byers; Kitchener D. Wilson; Joseph C. Wu; Carlos Simón; Outi Hovatta; Renee A. Reijo Pera
Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that ∼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications.
Circulation-cardiovascular Genetics | 2010
Kitchener D. Wilson; Shijun Hu; Shivkumar Venkatasubrahmanyam; Ji-Dong Fu; Ning Sun; Oscar J. Abilez; Joshua J.A. Baugh; Fangjun Jia; Zhumur Ghosh; Ronald A. Li; Atul J. Butte; Joseph C. Wu
Background—MicroRNAs (miRNAs) are a newly discovered endogenous class of small, noncoding RNAs that play important posttranscriptional regulatory roles by targeting messenger RNAs for cleavage or translational repression. Human embryonic stem cells are known to express miRNAs that are often undetectable in adult organs, and a growing body of evidence has implicated miRNAs as important arbiters of heart development and disease. Methods and Results—To better understand the transition between the human embryonic and cardiac “miRNA-omes,” we report here the first miRNA profiling study of cardiomyocytes derived from human embryonic stem cells. Analyzing 711 unique miRNAs, we have identified several interesting miRNAs, including miR-1, -133, and -208, that have been previously reported to be involved in cardiac development and disease and that show surprising patterns of expression across our samples. We also identified novel miRNAs, such as miR-499, that are strongly associated with cardiac differentiation and that share many predicted targets with miR-208. Overexpression of miR-499 and -1 resulted in upregulation of important cardiac myosin heavy-chain genes in embryoid bodies; miR-499 overexpression also caused upregulation of the cardiac transcription factor MEF2C. Conclusions—Taken together, our data give significant insight into the regulatory networks that govern human embryonic stem cell differentiation and highlight the ability of miRNAs to perturb, and even control, the genes that are involved in cardiac specification of human embryonic stem cells.
PLOS ONE | 2011
Ji Dong Fu; Stephanie N. Rushing; Deborah K. Lieu; Camie W. Chan; Chi Wing Kong; Lin Geng; Kitchener D. Wilson; Nipavan Chiamvimonvat; Kenneth R. Boheler; Joseph C. Wu; Gordon Keller; Roger J. Hajjar; Ronald A. Li
Background MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. Methods and Results We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p<0.05) and contractile protein expression without affecting their electrophysiological properties (p>0.05). By contrast, LV-miR-1 transduction did not bias the yield (p>0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased Ito, IKs and IKr, and decreased If (p<0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca2+ transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. Conclusion We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.
PLOS ONE | 2009
Zongjin Li; Kitchener D. Wilson; Bryan Smith; Daniel Kraft; Fangjun Jia; Mei Huang; Xiaoyan Xie; Robert C. Robbins; Sanjiv S. Gambhir; Irving L. Weissman; Joseph C. Wu
Background Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However, the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product, both of which can limit the future clinical application of hESC-ECs. Moreover, to fully understand the beneficial effects of stem cell therapy, investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. Methodology In this study, we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray, and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover, our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. Conclusion Taken together, we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes, form functional vessels in vivo, and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
Stem Cells | 2013
Shijun Hu; Kitchener D. Wilson; Zhumur Ghosh; Leng Han; Yongming Wang; Feng Lan; Katherine J. Ransohoff; Paul W. Burridge; Joseph C. Wu
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression through translational inhibition and RNA decay and have been implicated in the regulation of cellular differentiation, proliferation, angiogenesis, and apoptosis. In this study, we analyzed global miRNA and mRNA microarrays to predict novel miRNA‐mRNA interactions in human embryonic stem cells and induced pluripotent stem cells (iPSCs). In particular, we demonstrate a regulatory feedback loop between the miR‐302 cluster and two transcription factors, NR2F2 and OCT4. Our data show high expression of miR‐302 and OCT4 in pluripotent cells, while NR2F2 is expressed exclusively in differentiated cells. Target analysis predicts that NR2F2 is a direct target of miR‐302, which we experimentally confirm by reporter luciferase assays and real‐time polymerase chain reaction. We also demonstrate that NR2F2 directly inhibits the activity of the OCT4 promoter and thus diminishes the positive feedback loop between OCT4 and miR‐302. Importantly, higher reprogramming efficiencies were obtained when we reprogrammed human adipose‐derived stem cells into iPSCs using four factors (KLF4, C‐MYC, OCT4, and SOX2) plus miR‐302 (this reprogramming cocktail is hereafter referred to as “KMOS3”) when compared to using four factors (“KMOS”). Furthermore, shRNA knockdown of NR2F2 mimics the over‐expression of miR‐302 by also enhancing reprogramming efficiency. Interestingly, we were unable to generate iPSCs from miR‐302a/b/c/d alone, which is in contrast to previous publications that have reported that miR‐302 by itself can reprogram human skin cancer cells and human hair follicle cells. Taken together, these findings demonstrate that miR‐302 inhibits NR2F2 and promotes pluripotency through indirect positive regulation of OCT4. This feedback loop represents an important new mechanism for understanding and inducing pluripotency in somatic cells. STEM CELLS2013;31:259–268
Cancer Research | 2011
Zhumur Ghosh; Mei Huang; Shijun Hu; Kitchener D. Wilson; Devaveena Dey; Joseph C. Wu
Pluripotent stem cells, both human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), can give rise to multiple cell types and hence have tremendous potential for regenerative therapies. However, the tumorigenic potential of these cells remains a great concern, as reflected in the formation of teratomas by transplanted pluripotent cells. In clinical practice, most pluripotent cells will be differentiated into useful therapeutic cell types such as neuronal, cardiac, or endothelial cells prior to human transplantation, drastically reducing their tumorigenic potential. Our work investigated the extent to which these differentiated stem cell derivatives are truly devoid of oncogenic potential. In this study, we analyzed the gene expression patterns from three sets of hiPSC- and hESC-derivatives and the corresponding primary cells, and compared their transcriptomes with those of five different types of cancer. Our analysis revealed a significant gene expression overlap of the hiPSC- and hESC-derivatives with cancer, whereas the corresponding primary cells showed minimum overlap. Real-time quantitative PCR analysis of a set of cancer-related genes (selected on the basis of rigorous functional and pathway analyses) confirmed our results. Overall, our findings suggested that pluripotent stem cell derivatives may still bear oncogenic properties even after differentiation, and additional stringent functional assays to purify these cells should be done before they can be used for regenerative therapy.