Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiwon Song is active.

Publication


Featured researches published by Kiwon Song.


Nature Biotechnology | 2010

Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe.

Dong Uk Kim; Jacqueline Hayles; Dongsup Kim; Valerie Wood; Han Oh Park; Misun Won; Hyang Sook Yoo; Trevor Duhig; Miyoung Nam; Georgia Palmer; Sangjo Han; Linda Jeffery; Seung Tae Baek; Hyemi Lee; Young Sam Shim; Min-Ho Lee; Lila Kim; Kyung Sun Heo; Eun Joo Noh; Ah Reum Lee; Young Joo Jang; Kyung Sook Chung; Shin Jung Choi; Jo Young Park; Young Woo Park; Hwan Mook Kim; Song Kyu Park; Hae Joon Park; Eun Jung Kang; Hyong Bai Kim

We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast—the only other eukaryote for which a comprehensive knockout library exists—revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.


PLOS ONE | 2014

Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

Yonghao Ma; Chang Seung Ha; Seok Won Hwang; Hae June Lee; Gyoo Cheon Kim; Kyo Won Lee; Kiwon Song

Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells.


Biochemical and Biophysical Research Communications | 2010

Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells

Jiyeon Kim; Chang Seung Ha; Hae June Lee; Kiwon Song

We investigated the effects of extremely low frequency time-varying magnetic fields (MFs) on human normal and cancer cells. Whereas a single exposure to a 60-Hz time-varying MF of 6mT for 30min showed no effect, repetitive exposure decreased cell viability. This decrease was accompanied by phosphorylation of γ-H2AX, a common DNA double-strand break (DSB) marker, and checkpoint kinase 2 (Chk2), which is critical to the DNA damage checkpoint pathway. In addition, repetitive exposure to a time-varying MF of 6mT for 30min every 24h for 3days led to p38 activation and induction of apoptosis in cancer and normal cells. Therefore, these results demonstrate that repetitive exposure to MF with extremely low frequency can induce DNA DSBs and apoptosis through p38 activation. These results also suggest the need for further evaluation of the effects of repetitive exposure to environmental time-varying MFs on human health.


Biochemical and Biophysical Research Communications | 2003

The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells.

Sung-Yu Hong; Hyeryung Lee; Weon-Kyoo You; Kwang-Hoe Chung; Doo-Sik Kim; Kiwon Song

Salmosin, a disintegrin purified from a Korean snake (Agkistrodon halys brevicaudus) venom, interacts with integrin alpha(v)beta(3) and inhibits the proliferation of bovine capillary endothelial (BCE) cells induced by basic fibroblast growth factor (bFGF). We investigated salmosins mechanism of inhibition of BCE cell proliferation by examining changes in the cytoskeleton and activation of integrin-mediated signaling molecules. Salmosin disassembled cortical actins at focal adhesions and induced cells to be rounded and detached, but it did not alter microtubule structures in the early stage of cells being rounded. Immunolocalization of paxillin also demonstrated that focal adhesions were disassembled by salmosin. In salmosin-treated BCE cells, focal adhesion kinase (FAK) was dephosphorylated and expression of paxillin and p130(CAS) was decreased, but PI3 kinase, ILK, and beta-catenin were not expressed in decreased amounts or modified, suggesting that salmosin inactivated FAK-dependent integrin signaling pathways. While BCE cells proliferated normally on plates coated with salmosin, cells treated with salmosin eventually underwent apoptosis. These observations strongly suggest that salmosin disorganizes focal contacts to detach cells by competing with the extracellular matrix (ECM) for direct binding to integrin alpha(v)beta(3) on the cell surface, eventually leading to apoptosis.


Cell Cycle | 2007

Actin Dysfunction Activates ERK1/2 and Delays Entry into Mitosis in Mammalian Cells

Kyunghee Lee; Kiwon Song

Investigations of actin function during the cell cycle have focused primarily on cytokinesis. Here, we describe the role of actin at the entry into mitosis in primary mammalian cells. Depolymerization of actin with cytochalasin D or inhibition of myosin ATPase with butanedione-2-monoxime (BDM) at G2 blocked the mitotic spindle formation and central positioning of the nucleus in synchronized MEF and IMR90 cells. Time-lapse microscopy confirmed that these treatments inhibit both spindle formation and separation of duplicated centrosomes to the opposite poles. Concurrent with actin dysfunction, activation of Cdc2 and nuclear localization of cyclin B1 were delayed. Furthermore, cyclin A degradation that is necessary for nuclear envelope breakdown (NEBD) in early mitosis was deferred, supporting the conclusion that mitotic onset was delayed. The activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was sustained in these cells, and the use of a specific ERK inhibitor or a dominant negative form of ERK2 abrogated this delay of entry into mitosis. This delay of mitotic entry and the sustained ERK1/2 activity by actin dysfunction was observed only in primary cells and not in transformed cancer cell lines. These observations demonstrate that an intact actin cytoskeleton is necessary for entry into mitosis and that ERK1/2 is involved in monitoring actin dysfunction to control the onset of mitosis, suggesting the presence of an actin checkpoint at the G2/M transition in primary mammalian cells.


Chemistry & Biology | 2015

A Small Molecule Inhibitor of ATPase Activity of HSP70 Induces Apoptosis and Has Antitumor Activities

Sung Kyun Ko; Jiyeon Kim; Deuk Chae Na; Sookil Park; Seong Hyun Park; Ji Young Hyun; Kyung Hwa Baek; Nam Doo Kim; Nak Kyoon Kim; Young Nyun Park; Kiwon Song; Injae Shin

The heat shock protein HSP70 plays antiapoptotic and oncogenic roles, and thus its inhibition has been recognized as a potential avenue for anticancer therapy. Here we describe the small molecule, apoptozole (Az), which inhibits the ATPase activity of HSP70 by binding to its ATPase domain and, as a result, induces an array of apoptotic phenotypes in cancer cells. Affinity chromatography provides evidence that Az binds HSP70 but not other types of heat shock proteins including HSP40, HSP60, and HSP90. We also demonstrate that Az induces cancer cell death via caspase-dependent apoptosis by disrupting the interaction of HSP70 with APAF-1. Animal studies indicate that Az treatment retards tumor growth in a xenograft mouse model without affecting mouse viability. These studies suggest that Az will aid the development of new cancer therapies and serve as a chemical probe to gain a better understanding of the diverse functions of HSP70.


Biochimica et Biophysica Acta | 1999

IBD1P, A POSSIBLE SPINDLE POLE BODY ASSOCIATED PROTEIN, REGULATES NUCLEAR DIVISION AND BUD SEPARATION IN SACCHAROMYCES CEREVISIAE

Jeongkyo Lee; Hyung Seo Hwang; Jinmi Kim; Kiwon Song

The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.


PLOS Genetics | 2012

Cdc5-Dependent Asymmetric Localization of Bfa1 Fine-Tunes Timely Mitotic Exit

Junwon Kim; Guangming Luo; Young Yil Bahk; Kiwon Song

In budding yeast, the major regulator of the mitotic exit network (MEN) is Tem1, a GTPase, which is inhibited by the GTPase-activating protein (GAP), Bfa1/Bub2. Asymmetric Bfa1 localization to the bud-directed spindle pole body (SPB) during metaphase also controls mitotic exit, but the molecular mechanism and function of this localization are not well understood, particularly in unperturbed cells. We identified four novel Cdc5 target residues within the Bfa1 C-terminus: 452S, 453S, 454S, and 559S. A Bfa1 mutant in which all of these residues had been changed to alanine (Bfa14A) persisted on both SPBs at anaphase and was hypo-phosphorylated, despite retaining its GAP activity for Tem1. A Bfa1 phospho-mimetic mutant in which all of these residues were switched to aspartate (Bfa14D) always localized asymmetrically to the SPB. These observations demonstrate that asymmetric localization of Bfa1 is tightly linked to its Cdc5-dependent phosphorylation, but not to its GAP activity. Consistent with this, in kinase-defective cdc5-2 cells Bfa1 was not phosphorylated and localized to both SPBs, whereas Bfa14D was asymmetrically localized. BFA14A cells progressed through anaphase normally but displayed delayed mitotic exit in unperturbed cell cycles, while BFA14D cells underwent mitotic exit with the same kinetics as wild-type cells. We suggest that Cdc5 induces the asymmetric distribution of Bfa1 to the bud-directed SPB independently of Bfa1 GAP activity at anaphase and that Bfa1 asymmetry fine-tunes the timing of MEN activation in unperturbed cell cycles.


Cell Cycle | 2008

Basal c-Jun N-terminal kinases promote mitotic progression through histone H3 phosphorylation.

Kyunghee Lee; Kiwon Song

Phosphorylation of histone H3 at serine 10 (S10) is essential for the onset of mitosis. Here, we show that basal c-Jun N-terminal kinases (JNKs) are required for mitotic histone H3 S10 phosphorylation in human primary fibroblast IMR90 cells. Inhibition of JNKs by specific pharmacologic inhibitors, expression of dominant-negative JNK1 and 2 mutants, or RNAi of JNK1 and 2 prevented phosphorylation of histone H3 at S10 in vivo. The JNK-specific inhibitor SP600125 blocked mitotic entry, as shown by its ability to prevent CDK1 dephosphorylation and cyclin A degradation. Basal JNK phosphorylation increased at G2/M-phase, although total JNK protein levels remained unchanged. In addition, basal JNKs were localized in nuclei and centrosomes during this time, suggesting that the nuclear localization of JNKs during G2/M is tightly coupled with histone H3 phosphorylation. Basal JNKs were able to phosphorylate histone H3 in vitro and co-precipitation of histone H3 and JNKs was only detected at G2/M. Taken together, these data strongly suggest that basal JNKs play a key role in controlling histone H3 phosphorylation for mitotic entry at G2/M-phase.


Journal of Biological Chemistry | 2002

Selective Inhibition of MAPKK Wis1 in the Stress-activated MAPK Cascade of Schizosaccharomyces pombe by Novel Berberine Derivatives

Myoung Jin Jang; Miri Jwa; Jung-Ho Kim; Kiwon Song

Intracellular molecular targets of novel berberine derivatives, HWY 289 and HWY 336, were identified by a screen of a variety of mutants in fission yeast Schizosaccharomyces pombe. HWY 289 and HWY 336 completely inhibited the proliferation of wild type as well as various mutant fission yeast cells (minimal inhibitory concentrations were 29.52 μm for HWY 289 and 11.83 μm for HWY 336), but did not affect the proliferation of Wis1 mitogen-activated protein kinase kinase (MAPKK) deletion mutants. In addition, HWY 289 with an IC50 value of 7.3 μm or HWY 336 with IC50 of 5.7 μm specifically inhibited in vitro kinase activities of purified Wis1, whereas either compound did not affect the activities of other kinases in the mitogen-activated protein kinase (MAPK) cascades of fission yeast. These genetic and biochemical results demonstrate the high degree of specificity of HWY 289 and HWY 336 to MAPKK Wis1 and suggest that the cytotoxicity of these compounds is not simply due to the inhibition of Wis1 kinase activity. High salt wash experiments have shown that strong noncovalent binding occurs between Wis1 and either HWY 289 or HWY 336. The preincubation of Wis1 kinase with ATP did not affect the inhibition of Wis1 by HWY 289 and HWY 336, but when Wis1 was preincubated with MBP, a protein substrate, Wis1 kinase activity was no longer inhibited. These observations demonstrate that HWY 289/HWY 336 do inhibit Wis1 kinase, not by binding to the ATP-binding site but by disturbing the binding of substrate to the kinase. Target validation of the complex of HWY 289/HWY 336 and Wis1 kinase will provide important clues for the mechanism of specific cytotoxicity of these compounds in S. pombe. On a broader aspect, it would create an initiative to further modify and develop compounds that selectively inhibit kinases and cause cytotoxicity in various MAPK cascades including those of mammals.

Collaboration


Dive into the Kiwon Song's collaboration.

Top Co-Authors

Avatar

Hae June Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Seung Ha

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Eun Joo Noh

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hwan Mook Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge