Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyoaki Ishii is active.

Publication


Featured researches published by Kiyoaki Ishii.


Nature Medicine | 2009

Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation

Kiyoaki Ishii; Toshio Fumoto; Kazuhiro Iwai; Sunao Takeshita; Masako Ito; Nobuyuki Shimohata; Hiroyuki Aburatani; Shigeru Taketani; Christopher J. Lelliott; Antonio Vidal-Puig; Kyoji Ikeda

Osteoclasts are acid-secreting polykaryons that have high energy demands and contain abundant mitochondria. How mitochondrial biogenesis is integrated with osteoclast differentiation is unknown. We found that the transcription of Ppargc1b, which encodes peroxisome proliferator–activated receptor-γ coactivator 1β (PGC-1β), was induced during osteoclast differentiation by cAMP response element–binding protein (CREB) as a result of reactive oxygen species. Knockdown of Ppargc1b in vitro inhibited osteoclast differentiation and mitochondria biogenesis, whereas deletion of the Ppargc1b gene in mice resulted in increased bone mass due to impaired osteoclast function. We also observed defects in PGC-1β–deficient osteoblasts. Owing to the heightened iron demand in osteoclast development, transferrin receptor 1 (TfR1) expression was induced post-transcriptionally via iron regulatory protein 2. TfR1-mediated iron uptake promoted osteoclast differentiation and bone-resorbing activity, associated with the induction of mitochondrial respiration, production of reactive oxygen species and accelerated Ppargc1b transcription. Iron chelation inhibited osteoclastic bone resorption and protected against bone loss following estrogen deficiency resulting from ovariectomy. These data establish mitochondrial biogenesis orchestrated by PGC-1β, coupled with iron uptake through TfR1 and iron supply to mitochondrial respiratory proteins, as a fundamental pathway linked to osteoclast activation and bone metabolism.


Biochemical and Biophysical Research Communications | 2009

The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice.

Noriko Nakanishi; Yoshimi Nakagawa; Naoko Tokushige; Naohito Aoki; Takashi Matsuzaka; Kiyoaki Ishii; Naoya Yahagi; Kazuto Kobayashi; Shigeru Yatoh; Akimitsu Takahashi; Hiroaki Suzuki; Osamu Urayama; Nobuhiro Yamada; Hitoshi Shimano

MicroRNAs (miRNAs) are short non-coding RNA that post-transcriptionally regulates gene expression. Some miRNAs have been proposed to be associated with obesity. However, miRNAs, which are related to the development of obesity in vivo remains unknown. Here in, we found the up-regulation of miR-335 in obesity using microarray analysis for miRNA. The expressions of miR-335 in liver and white adipose tissue (WAT) were up-regulated in obese mice including ob/ob, db/db, and KKAy mice. Increased miR-335 expressions were associated with an elevated body, liver and WAT weight, and hepatic triglyceride and cholesterol. Furthermore, miR-335 levels were closely correlated with expression levels of adipocyte differentiation markers such as PPARgamma, aP2, and FAS in 3T3-L1 adipocyte. These findings provide the first evidence that the up-regulated expressions of miR-335 in liver and WAT of obese mice might contribute to the pathophysiology of obesity.


Hepatology | 2012

Elovl6 promotes nonalcoholic steatohepatitis.

Takashi Matsuzaka; Ayaka Atsumi; Rie Matsumori; Tang Nie; Haruna Shinozaki; Noriko Suzuki-Kemuriyama; Motoko Kuba; Yoshimi Nakagawa; Kiyoaki Ishii; Masako Shimada; Kazuto Kobayashi; Shigeru Yatoh; Akimitsu Takahashi; Kazuhiro Takekoshi; Hirohito Sone; Naoya Yahagi; Hiroaki Suzuki; Soichiro Murata; Makoto Nakamuta; Nobuhiro Yamada; Hitoshi Shimano

Nonalcoholic steatohepatitis (NASH) is associated with obesity and type 2 diabetes, and an increased risk for liver cirrhosis and cancer. ELOVL family member 6, elongation of very long chain fatty acids (Elovl6), is a microsomal enzyme that regulates the elongation of C12‐16 saturated and monounsaturated fatty acids (FAs). We have shown previously that Elovl6 is a major target for sterol regulatory element binding proteins in the liver and that it plays a critical role in the development of obesity‐induced insulin resistance by modifying FA composition. To further investigate the role of Elovl6 in the development of NASH and its underlying mechanism, we used three independent mouse models with loss or gain of function of Elovl6, and human liver samples isolated from patients with NASH. Our results demonstrate that (1) Elovl6 is a critical modulator for atherogenic high‐fat diet–induced inflammation, oxidative stress, and fibrosis in the liver; (2) Elovl6 expression is positively correlated with severity of hepatosteatosis and liver injury in NASH patients; and (3) deletion of Elovl6 reduces palmitate‐induced activation of the NLR family pyrin domain‐containing 3 inflammasome; this could be at least one of the underlying mechanisms by which Elovl6 modulates the progress of NASH. Conclusion: Hepatic long‐chain fatty acid composition is a novel determinant in NASH development, and Elovl6 could be a potential therapeutic target for the prevention and treatment of NASH. (HEPATOLOGY 2012;56:2199–2208)


Journal of Bone and Mineral Research | 2013

Metabolic regulation of osteoclast differentiation and function

Yoriko Indo; Sunao Takeshita; Kiyoaki Ishii; Takayuki Hoshii; Hiroyuki Aburatani; Atsushi Hirao; Kyoji Ikeda

The osteoclast is a giant cell that resorbs calcified matrix by secreting acids and collagenolytic enzymes. The molecular mechanisms underlying metabolic adaptation to the increased biomass and energetic demands of osteoclastic bone resorption remain elusive. Here we show that during osteoclastogenesis the expression of both glucose transporter 1 (Glut1) and glycolytic genes is increased, whereas the knockdown of hypoxia‐inducible factor 1‐alpha (Hif1α), as well as glucose deprivation, inhibits the bone‐resorbing function of osteoclasts, along with a suppression of Glut1 and glycolytic gene expression. Furthermore, the expression of the glutamine transporter solute carrier family 1 (neutral amino acid transporter), member 5 (Slc1a5) and glutaminase 1 was increased early in differentiation, and a depletion of L‐glutamine or pharmacological inhibition of the Slc1a5 transporter suppressed osteoclast differentiation and function. Inhibition of c‐Myc function abrogated osteoclast differentiation and function, along with a suppression of Slc1a5 and glutaminase 1 gene expression. Genetic and pharmacological inhibition of mammalian target of rapamycin (mTOR), as well as the activation of adenosine monophosphate (AMP)‐activated protein kinase (AMPK), inhibited osteoclastogenesis. Thus, the uptake of glucose and glutamine and utilization of the carbon sources derived from them, coordinated by HIF1α and c‐Myc, are essential for osteoclast development and bone‐resorbing activity through a balanced regulation of the nutrient and energy sensors, mTOR and AMPK.


Biochemical and Biophysical Research Communications | 2010

The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARα

Hirosuke Danno; Kiyoaki Ishii; Yoshimi Nakagawa; Motoki Mikami; Takashi Yamamoto; Sachiko Yabe; Mika Furusawa; Shin Kumadaki; Kazuhisa Watanabe; Hidehisa Shimizu; Takashi Matsuzaka; Kazuto Kobayashi; Akimitsu Takahashi; Shigeru Yatoh; Hiroaki Suzuki; Nobuhiro Yamada; Hitoshi Shimano

To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPARalpha agonist and repressed by PPARalpha antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPARalpha. Deletion studies identified the PPRE for PPARalpha activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPARalpha directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPARalpha suggest that CREBH is involved in nutritional regulation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice.

Tadayoshi Karasawa; Akimitsu Takahashi; Ryo Saito; Motohiro Sekiya; Masaki Igarashi; Hitoshi Iwasaki; Shoko Miyahara; Saori Koyasu; Yoshimi Nakagawa; Kiyoaki Ishii; Takashi Matsuzaka; Kazuto Kobayashi; Naoya Yahagi; Kazuhiro Takekoshi; Hirohito Sone; Shigeru Yatoh; Hiroaki Suzuki; Nobuhiro Yamada; Hitoshi Shimano

Objective—Sterol regulatory element–binding protein-1 (SREBP-1) is nutritionally regulated and is known to be a key transcription factor regulating lipogenic enzymes. The goal of this study was to evaluate the roles of SREBP-1 in dyslipidemia and atherosclerosis. Methods and Results—Transgenic mice that overexpress SREBP-1c in the liver and SREBP-1-deficient mice were crossed with low-density lipoprotein receptor (LDLR)–deficient mice, and the plasma lipids and atherosclerosis were analyzed. Hepatic SREBP-1c overexpression in LDLR-deficient mice caused postprandial hypertriglyceridemia, increased very-low-density lipoprotein (VLDL) cholesterol, and decreased high-density lipoprotein cholesterol in plasma, which resulted in accelerated aortic atheroma formation. Conversely, absence of SREBP-1 suppressed Western diet–induced hyperlipidemia in LDLR-deficient mice and ameliorated atherosclerosis. In contrast, bone marrow-specific SREBP-1 deficiency did not alter the development of atherosclerosis. The size of nascent VLDL particles secreted from the liver was increased in SREBP-1c transgenic mice and reduced in SREBP-1-deficient mice, accompanied by upregulation and downregulation of phospholipid transfer protein expression, respectively. Conclusion—Hepatic SREBP-1c determines plasma triglycerides and remnant cholesterol and contributes to atherosclerosis in hyperlipidemic states. Hepatic SREBP-1c also regulates the size of nascent VLDL particles.


Journal of Hypertension | 2001

Angiotensin subtype-2 receptor (AT2 ) negatively regulates subtype-1 receptor (AT1 ) in signal transduction pathways in cultured porcine adrenal medullary chromaffin cells.

Kiyoaki Ishii; Kazuhiro Takekoshi; Shunsuke Shibuya; Yasushi Kawakami; Kazumasa Isobe; Toshiaki Nakai

Background Two distinct types of angiotensin II (AngII) receptors, AT1 and AT2, have been cloned. We have shown previously that stimulation of AT2 reduces intracellular cyclic guanosine monophosphate (cGMP) levels in cultured porcine chromaffin cells in which AT2 is the predominantly expressed receptor. However, it has not been determined whether AT1 or AT2 affects signal transduction pathways involving mitogen-activated protein kinases (MAPKs) and signal transducers and activators of transcription (STATs) in chromaffin cells. Also, it is unclear whether cGMP/protein kinase G (PKG) is involved in the regulation of MAPKs and STATs in these cells. Design Chromaffin cells were derived from porcine adrenal medulla. The effects of AngII alone (representing physiological conditions), AngII plus CV-11974 (an AT1 antagonist, which simulates specific AT2 stimulation), AngII plus PD 123319 (an AT2 antagonist, which simulates specific AT1 stimulation), and 8-Br-cGMP (a membrane-permeable cGMP analogue) alone on MAPKs (ERKs, JNK, p-38 MAPK) and STATs (STATs 1, 3 and 5) activity were measured. Methods Phosphorylated MAPKs (extracellular signal-related kinases (ERKs), c-jun N-terminal kinase (JNK) and p38 MAPK) and STATs (STATs 1, 3 and 5) were measured by immunoprecipitation–Western blot analysis (IP–Western blot). Results AT1 stimulation markedly increased expression of ERKs, JNK, p38 MAPK via Ca2+-dependent protein kinase C (PKC) isoforms (cPKC), as well as STATs 1, 3 and 5 in cultured porcine chromaffin cells. In contrast, AT2 stimulation markedly decreased the expression of these signaling molecules. Also, 8-Br-cGMP alone induced increases in ERKs, JNK, p38 MAPK, and STATs 1, 3 and 5. Because AT2 inhibits cGMP production, we speculate that AT2 may act to suppress cGMP production, which in turn reduces the activity of both MAPKs and STATs in chromaffin cells. Conclusion AT2 negatively regulates AT1 in signal transduction pathways in chromaffin cells.


Life Sciences | 2000

Effects of natriuretic peptides (ANP, BNP, CNP) on catecholamine synthesis and TH mRNA levels in PC12 cells.

Kazuhiro Takekoshi; Kiyoaki Ishii; Kazumasa Isobe; Fumio Nomura; Toru Nammoku; Toshiaki Nakai

Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are present in adrenal chromaffin cells, and are co-secreted with catecholamines suggesting that these natriuretic peptides (NPs) may modulate functions of chromaffin cells in an autocrine and/or paracrine manner. Therefore, we investigated the effects of NPs on tyrosine hydroxylase (TH: a rate-limiting enzyme in biosynthesis of catecholamine) mRNA in rat pheochromocytoma PC12 cells. It was also determined whether the cyclic GMP/cGMP-dependent protein kinase (cGMP/PKG) pathway was involved in theses effects. Finally, we examined the effects of NPs on intracellular catecholamine content to confirm increase of catecholamine synthesis following TH mRNA induction. NPs (0.1 microM) induced significant increases of the TH mRNA (ANP= BNP> CNP). Also, the effects of NPs on TH mRNA were mimicked by 8-bromo cyclic GMP (1mM), and were blocked by KT5823 (1 microM) (inhibitor PKG) or LY83583 (1 microM) (guanylate cyclase inhibitor). Moreover, NPs were shown to induce significant increases of intracellular catecholamine contents (ANP= BNP> CNP). These findings suggest that NPs induced increases of TH mRNA through cGMP/PKG dependent mechanisms, which, in turn, resulted in stimulation of catecholamine synthesis in PC12 cells.


Endocrinology | 2001

Activation of Angiotensin II Subtype 2 Receptor Induces Catecholamine Release in an Extracellular Ca2+-Dependent Manner through a Decrease of Cyclic Guanosine 3′,5′-Monophosphate Production in Cultured Porcine Adrenal Medullary Chromaffin Cells1

Kazuhiro Takekoshi; Kiyoaki Ishii; Yasushi Kawakami; Kazumasa Isobe; Toshiaki Nakai

We have previously demonstrated that CGP 42112 (AT2 agonist: ≧1 nm) markedly reduces catecholamine biosynthesis through AT2, which is the major angiotensin II (AngII) receptor subtype in cultured porcine chromaffin cells. Also, we have shown that CGP 42112 (≧1 nm) induces a reduction in cGMP production in these cells. The present study showed that AngII reduced cGMP production via AT2 in a manner similar to that found with CGP 42112. AngII (1 nm) significantly increased catecholamine secretion from cultured porcine adrenal medullary chromaffin cells. The stimulation was significantly inhibited by PD 123319 (AT2 antagonist). The stimulation was moderately, but significantly, attenuated by CV-11974 (AT1 antagonist,≧ 10 nm), suggesting an involvement of AT1. Moreover, CGP 42112 (≧10 nm) markedly increased catecholamine release from these cells. The stimulation by CGP 42112 was abolished by PD 123319, whereas CV-11974 had no effect, indicating that this response is also mediated by AT2. We further examined wh...


Endocrinology | 2014

Hepatic CREB3L3 Controls Whole-Body Energy Homeostasis and Improves Obesity and Diabetes

Yoshimi Nakagawa; Aoi Satoh; Sachiko Yabe; Mika Furusawa; Naoko Tokushige; Hitomi Tezuka; Motoki Mikami; Wakiko Iwata; Akiko Shingyouchi; Takashi Matsuzaka; Shiori Kiwata; Yuri Fujimoto; Hidehisa Shimizu; Hirosuke Danno; Takashi Yamamoto; Kiyoaki Ishii; Tadayoshi Karasawa; Yoshinori Takeuchi; Hitoshi Iwasaki; Masako Shimada; Yasushi Kawakami; Osamu Urayama; Hirohito Sone; Kazuhiro Takekoshi; Kazuto Kobayashi; Shigeru Yatoh; Akimitsu Takahashi; Naoya Yahagi; Hiroaki Suzuki; Nobuhiro Yamada

Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.

Collaboration


Dive into the Kiyoaki Ishii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge