Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyoko Iwatsuki-Horimoto is active.

Publication


Featured researches published by Kiyoko Iwatsuki-Horimoto.


Nature | 2009

In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses

Yasushi Itoh; Kyoko Shinya; Maki Kiso; Tokiko Watanabe; Yoshihiro Sakoda; Masato Hatta; Yukiko Muramoto; Daisuke Tamura; Yuko Sakai-Tagawa; Takeshi Noda; Saori Sakabe; Masaki Imai; Yasuko Hatta; Shinji Watanabe; Chengjun Li; S. Yamada; Ken Fujii; Shin Murakami; Hirotaka Imai; Satoshi Kakugawa; Mutsumi Ito; Ryo Takano; Kiyoko Iwatsuki-Horimoto; Masayuki Shimojima; Taisuke Horimoto; Hideo Goto; Kei Takahashi; Akiko Makino; Hirohito Ishigaki; Misako Nakayama

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Nature | 2013

Characterization of H7N9 influenza A viruses isolated from humans.

Tokiko Watanabe; Maki Kiso; Satoshi Fukuyama; Noriko Nakajima; Masaki Imai; S. Yamada; Shin Murakami; Seiya Yamayoshi; Kiyoko Iwatsuki-Horimoto; Yoshihiro Sakoda; Emi Takashita; Ryan McBride; Takeshi Noda; Masato Hatta; Hirotaka Imai; Dongming Zhao; Noriko Kishida; Masayuki Shirakura; Robert P. de Vries; Shintaro Shichinohe; Masatoshi Okamatsu; Tomokazu Tamura; Yuriko Tomita; Naomi Fujimoto; Kazue Goto; Hiroaki Katsura; Eiryo Kawakami; Izumi Ishikawa; Shinji Watanabe; Mutsumi Ito

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Journal of Virology | 2006

Hierarchy among Viral RNA (vRNA) Segments in Their Role in vRNA Incorporation into Influenza A Virions

Yukiko Muramoto; Ayato Takada; Ken Fujii; Takeshi Noda; Kiyoko Iwatsuki-Horimoto; Shinji Watanabe; Taisuke Horimoto; Hiroshi Kida; Yoshihiro Kawaoka

ABSTRACT The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.


Journal of Experimental Medicine | 2007

A novel M cell–specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses

Tomonori Nochi; Yoshikazu Yuki; Akiko Matsumura; Mio Mejima; Kazutaka Terahara; Dong-Young Kim; Satoshi Fukuyama; Kiyoko Iwatsuki-Horimoto; Yoshihiro Kawaoka; Tomoko Kohda; Shunji Kozaki; Osamu Igarashi; Hiroshi Kiyono

Mucosally ingested and inhaled antigens are taken up by membranous or microfold cells (M cells) in the follicle-associated epithelium of Peyers patches or nasopharynx-associated lymphoid tissue. We established a novel M cell–specific monoclonal antibody (mAb NKM 16–2-4) as a carrier for M cell–targeted mucosal vaccine. mAb NKM 16–2-4 also reacted with the recently discovered villous M cells, but not with epithelial cells or goblet cells. Oral administration of tetanus toxoid (TT)– or botulinum toxoid (BT)–conjugated NKM 16–2-4, together with the mucosal adjuvant cholera toxin, induced high-level, antigen-specific serum immunoglobulin (Ig) G and mucosal IgA responses. In addition, an oral vaccine formulation of BT-conjugated NKM 16–2-4 induced protective immunity against lethal challenge with botulinum toxin. An epitope analysis of NKM 16–2-4 revealed specificity to an α(1,2)-fucose–containing carbohydrate moiety, and reactivity was enhanced under sialic acid–lacking conditions. This suggests that NKM 16–2-4 distinguishes α(1,2)-fucosylated M cells from goblet cells containing abundant sialic acids neighboring the α(1,2) fucose moiety and from non-α(1,2)-fucosylated epithelial cells. The use of NKM 16–2-4 to target vaccine antigens to the M cell–specific carbohydrate moiety is a new strategy for developing highly effective mucosal vaccines.


Journal of Virology | 2006

The Cytoplasmic Tail of the Influenza A Virus M2 Protein Plays a Role in Viral Assembly

Kiyoko Iwatsuki-Horimoto; Taisuke Horimoto; Takeshi Noda; Maki Kiso; Junko Maeda; Shinji Watanabe; Yukiko Muramoto; Ken Fujii; Yoshihiro Kawaoka

ABSTRACT The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.


Emerging Infectious Diseases | 2010

Influenza A (H5N1) viruses from pigs, Indonesia.

Chairul A. Nidom; Ryo Takano; S. Yamada; Yuko Sakai-Tagawa; Syafril Daulay; Didi Aswadi; Takashi Suzuki; Yasuo Suzuki; Kyoko Shinya; Kiyoko Iwatsuki-Horimoto; Yukiko Muramoto; Yoshihiro Kawaoka

TOC summary: Pigs may serve as intermediate hosts in which this avian virus can adapt to mammals.


PLOS Pathogens | 2010

The HA and NS Genes of Human H5N1 Influenza A Virus Contribute to High Virulence in Ferrets

Hirotaka Imai; Kyoko Shinya; Ryo Takano; Maki Kiso; Yukiko Muramoto; Saori Sakabe; Shin Murakami; Mutsumi Ito; S. Yamada; Mai thi Quynh Le; Chairul A. Nidom; Yuko Sakai-Tagawa; Kei Takahashi; Yasuyuki Omori; Takeshi Noda; Masayuki Shimojima; Satoshi Kakugawa; Hideo Goto; Kiyoko Iwatsuki-Horimoto; Taisuke Horimoto; Yoshihiro Kawaoka

Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.


Journal of Virology | 2009

Nucleotide Sequence Requirements at the 5′ End of the Influenza A Virus M RNA Segment for Efficient Virus Replication

Makoto Ozawa; Junko Maeda; Kiyoko Iwatsuki-Horimoto; Shinji Watanabe; Hideo Goto; Taisuke Horimoto; Yoshihiro Kawaoka

ABSTRACT The mechanism by which the influenza A virus genome is packaged into virions is not fully understood. The coding and noncoding regions necessary for packaging of the viral RNA segments, except for the M segment, have been identified. Here, we delineate the M segment regions by incorporating a reporter viral RNA into virions and by generating viruses possessing mutations in the regions. We found that, like the other segments, the M segment coding regions are essential for virion incorporation and that the nucleotide length rather than the nucleotide sequence of the 5′ end of the coding region is important.


Antiviral Research | 2010

A cross-reactive neutralizing monoclonal antibody protects mice from H5N1 and pandemic (H1N1) 2009 virus infection

Saori Sakabe; Kiyoko Iwatsuki-Horimoto; Taisuke Horimoto; Chairul A. Nidom; Mai thi Quynh Le; Ryo Takano; Ritsuko Kubota-Koketsu; Yoshinobu Okuno; Makoto Ozawa; Yoshihiro Kawaoka

A novel influenza (H1N1) virus caused an influenza pandemic in 2009, while highly pathogenic H5N1 avian influenza viruses have continued to infect humans since 1997. Influenza, therefore, remains a serious health threat. Currently, neuraminidase (NA) inhibitors are the mainstay for influenza therapy; however, drug-resistant mutants of seasonal H1N1 and H5N1 viruses have emerged highlighting the need for alternative therapeutic approaches. One such approach is antibody immunotherapy. Here, we show that the monoclonal antibody C179, which recognizes a neutralizing epitope common among H1, H2, H5, and H6 hemagglutinins (HAs), protected mice from a lethal challenge with various H5N1 and pandemic (H1N1) 2009 viruses when administered either intraperitoneally or intranasally. The protective efficacy of intranasally inoculated C179 was comparable to that of intraperitoneal administration. Our results suggest that direct administration of this anti-influenza antibody to viral replication sites is an effective strategy for prophylaxis and therapy.


Journal of General Virology | 2011

Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza viruses

Saori Sakabe; Kiyoko Iwatsuki-Horimoto; Ryo Takano; Chairul A. Nidom; Mai thi Quynh Le; Tokiko Nagamura-Inoue; Taisuke Horimoto; Naohide Yamashita; Yoshihiro Kawaoka

Highly pathogenic H5N1 avian influenza viruses have caused infection in humans, with a high mortality rate, since 1997. While the pathogenesis of this infection is not completely understood, hypercytokinaemia and alveolar macrophages are thought to play a role. To gain further insight into the cytokine-mediated pathogenesis of this infection in humans, we measured various cytokines produced by primary human macrophages infected with H5N1, pandemic H1N1 or seasonal influenza viruses. We found that many cytokines were produced at higher levels on infection with the H5N1 strains tested compared with seasonal influenza viruses. Interestingly, the extent of cytokine induction varied among the H5N1 strains and did not correlate with replicative ability in macrophages. Further, a pandemic H1N1 virus induced higher levels of several cytokines compared with seasonal viruses and some H5N1 strains. Our results demonstrate that high cytokine induction is not a universal feature of all H5N1 viruses.

Collaboration


Dive into the Kiyoko Iwatsuki-Horimoto's collaboration.

Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Hatta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinji Watanabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge