Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyoshi Fujimori is active.

Publication


Featured researches published by Kiyoshi Fujimori.


Journal of Pharmaceutical Sciences | 2009

Tungsten-induced protein aggregation: Solution behavior

Yijia Jiang; Yasser Nashed-Samuel; Cynthia Li; Wei Liu; Joey Pollastrini; David Mallard; Zai-Qing Wen; Kiyoshi Fujimori; Monica Pallitto; Lisa Donahue; Grace C. Chu; Gianni Torraca; Aylin Vance; Tony Mire-Sluis; Erwin Freund; Janice Davis; Linda O. Narhi

Tungsten has been associated with protein aggregation in prefilled syringes (PFSs). This study probed the relationship between PFSs, tungsten, visible particles, and protein aggregates. Experiments were carried out spiking solutions of two different model proteins with tungsten species obtained from the extraction of tungsten pins typically used in syringe manufacturing processes. These results were compared to those obtained with various soluble tungsten species from commercial sources. Although visible protein particles and aggregates were induced by tungsten from both sources, the extract from tungsten pins was more effective at inducing the formation of the soluble protein aggregates than the tungsten from other sources. Furthermore, our studies showed that the effect of tungsten on protein aggregation is dependent on the pH of the buffer used, the tungsten species, and the tungsten concentration present. The lower pH and increased tungsten concentration induced more protein aggregation. The protein molecules in the tungsten-induced aggregates had mostly nativelike structure, and aggregation was at least partly reversible. The aggregation was dependent on tungsten and protein concentration, and the ratio of these two and appears to arise through electrostatic interaction between protein and tungsten molecules. The level of tungsten required from the various sources was different, but in all cases it was at least an order of magnitude greater than the typical soluble tungsten levels measured in commercial PFS.


mAbs | 2013

Hydroxocobalamin association during cell culture results in pink therapeutic proteins.

Kenneth M. Prentice; Ronald Gillespie; Nathan E. Lewis; Kiyoshi Fujimori; Rebecca E. Mccoy; Julia Bach; Lisa Connell-Crowley; Catherine M Eakin

Process control of protein therapeutic manufacturing is central to ensuring the product is both safe and efficacious for patients. In this work, we investigate the cause of pink color variability in development lots of monoclonal antibody (mAb) and Fc-fusion proteins. Results show pink-colored product generated during manufacturing is due to association of hydroxocobalamin (OH-Cbl), a form of vitamin B12. OH-Cbl is not part of the product manufacturing process; however we found cyanocobalamin (CN-Cbl) in cell culture media converts to OH-Cbl in the presence of light. OH-Cbl can be released from mAb and Fc-fusion proteins by conversion with potassium cyanide to CN-Cbl, which does not bind. By exploiting the differential binding of CN-Cbl and OH-Cbl, we developed a rapid and specific assay to accurately measure B12 levels in purified protein. Analysis of multiple products and lots using this technique gives insight into color variability during manufacturing.


Pda Journal of Pharmaceutical Science and Technology | 2013

Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations

Ge Jiang; Monica M. Goss; Guiyang Li; Wendy Jing; Hong Shen; Kiyoshi Fujimori; Linda Le; Lyanne Wong; Zai-Qing Wen; Yasser Nashed-Samuel; Ken Riker; Abe Germansderfer; Paul Tsang; Margaret Speed Ricci

Storing protein formulations in the frozen state typically improves stability during long-term storage as a drug substance or as a drug product. The frozen state minimizes chemical degradation and physical instability. However, the frozen state is not an optimal storage condition for the glass vial itself. A significant issue was observed when small, flake-like pieces of glass particles (lamellae) appeared in vials containing thawed protein product. The occurrence of glass particles during freeze-thaw results in product rejection and potentially, adverse events. In recent years, glass flakes due to chemical delamination have been observed in parenteral liquid formulations after long-term storage, resulting in a number of product recalls. In this study, for the first time, glass delamination is reported in pharmaceutical glass vials containing frozen protein formulation, caused by a novel mechanism involving thermally-induced mechanical stress. In this article, a monoclonal antibody drug product in glass vials and the corresponding placebo vials were studied to identify the contributing factors from the freeze-thaw process, such as freezing temperature, the presence or absence of protein, and other handling conditions. Freezing temperature was found to be the most critical factor. Glass lamellae were only observed when the products were frozen to −70 °C, while freezing only to −30 °C did not cause any lamellae formation even after multiple freeze-thaw cycles. Protein concentration and the handling of the vials were also identified as contributing factors. A concentration gradient which formed after freeze-thaw induced a higher rate of lamellae occurrence in a subsequent freeze-thaw cycle compared to vials without the concentration gradient. Analyses by Fourier transform infrared spectroscopy and scanning electron microscopy/energy dispersive spectroscopy confirmed that the flake-like lamellae were thin, flat glass particles. Defects corresponding to the glass flakes were observed by scanning electron microscopy on the inner surface of the vials that contained lamellae. In addition, inductively coupled plasma mass spectrometry testing did not show elevated levels of silicon in the drug product solution, suggesting that the glass lamellae formed in the frozen vials was a local, event-based phenomenon rather than silica dissolution from the product contact surface or glass degradation caused by corrosive attack. These findings can be explained by the same thermally-induced mechanical stress which caused vial breakage. Frozen protein formulations contracted below −30 °C, causing an inward glass deformation and a subsequent rapid movement of the glass when the frozen plug of drug product solution separated from the vial inner surface at approximately −50 to −60 °C. The mechanical stress released during this separation caused vial breakage. The incidence of vial breakage increased with more concentrated product and higher fill volume–to–vial volume ratios. The same mechanism applies to lamellae formation. As the rapid surface separation occurred, small, thin pieces of glass were pulled from the glass surface by the frozen plug, and, as a result, glass lamellae particles appeared in the drug product solution after thawing. LAY ABSTRACT: In recent years, glass flakes have been observed in parenteral liquid formulations due to chemical delamination during long-term storage, resulting in a number of product recalls. In our study, we discovered a novel mechanism of glass delamination in vials containing frozen protein formulations. This glass delamination mechanism has never been reported before, and we believe this work will benefit the pharmaceutical scientific community, especially the biotechnology and parenteral drug industries. Storing protein formulations in the frozen state typically improves stability during long-term storage as a drug substance or as a drug product. The frozen state minimizes chemical degradation and physical instability. However, the frozen state is not an optimal storage condition for the glass vial itself. In this study, we observed that after thawing, small, flake-like pieces of glass particles (i.e., lamellae) appeared in vials containing frozen protein formulation. To investigate the root cause, we performed a series of freeze-thaw experiments and characterized the lamellae particles, the vial inner surface, and the elemental composition of the solution. The root cause was determined to be mechanical stress caused by thermal contraction of frozen protein formulations below −30 °C. This contraction caused an inward glass deformation on the vial sidewall and, subsequently, the glass vial surface abruptly separated from frozen protein formulation. Under this mechanical stress, small, thin glass pieces were peeled from the vial inner surface by the frozen formulation, causing lamellae formation. The experimental design and results leading to the discovery of the novel glass delamination mechanism are presented in detail in this article.


Journal of Pharmaceutical Sciences | 2014

A Case Study of Nondelamination Glass Dissolution Resulting in Visible Particles: Implications for Neutral pH Formulations

Gayathri Ratnaswamy; Alison Hair; Gary Li; Renuka Thirumangalathu; Yasser Nashed-Samuel; Lejla Brych; Vasumathi Dharmavaram; Zai-Qing Wen; Kiyoshi Fujimori; Wendy Jing; Ananth Sethuraman; Rob Swift; Margaret Speed Ricci; Deirdre Murphy Piedmonte

Visible particles were unexpectedly observed in a neutral-pH placebo formulation stored in glass vials but were not observed in the same formulation composition that contained protein. The particles were identified as silica gel (SiO2 ) and polysorbate 20, suggesting dissolution of the glass vial. Time course studies were performed to assess the effect of variables such as pH, excipients, storage temperature, and duration on particle formation. Data suggest that glass dissolution occurred during the storage in the liquid state, as shown by increased Si levels in solution. Upon freezing, the samples underwent freeze concentration and likely became supersaturated, which resulted in the appearance of visible silica particles upon thawing. The glass degradation described here is unique and differs from the more commonly reported delamination, defined by the presence of reflective, shard-like glass flakes in solution that are often termed lamellae. This case study underscores the importance of an early assessment (during formulation development) of potential incompatibility of the formulation with the primary container.


Pda Journal of Pharmaceutical Science and Technology | 2015

Extractables Analysis of Single-Use Flexible Plastic Biocontainers

Liliana Marghitoiu; Jian Liu; Hans Lee; Lourdes Perez; Kiyoshi Fujimori; Michael Ronk; Matthew Hammond; Heather Nunn; Asher Lower; Gary Rogers; Yasser Nashed-Samuel

Studies of the extractable profiles of bioprocessing components have become an integral part of drug development efforts to minimize possible compromise in process performance, decrease in drug product quality, and potential safety risk to patients due to the possibility of small molecules leaching out from the components. In this study, an effective extraction solvent system was developed to evaluate the organic extractable profiles of single-use bioprocess equipment, which has been gaining increasing popularity in the biopharmaceutical industry because of the many advantages over the traditional stainless steel-based bioreactors and other fluid mixing and storage vessels. The chosen extraction conditions were intended to represent aggressive conditions relative to the application of single-use bags in biopharmaceutical manufacture, in which aqueous based systems are largely utilized. Those extraction conditions, along with a non-targeted analytical strategy, allowed for the generation and identification of an array of extractable compounds; a total of 53 organic compounds were identified from four types of commercially available single-use bags, the majority of which are degradation products of polymer additives. The success of this overall extractables analysis strategy was reflected partially by the effectiveness in the extraction and identification of a compound that was later found to be highly detrimental to mammalian cell growth. LAY ABSTRACT: The usage of single-use bioreactors has been increasing in biopharmaceutical industry because of the appealing advantages that it promises regarding to the cleaning, sterilization, operational flexibility, and so on, during manufacturing of biologics. However, compared to its conventional counterparts based mainly on stainless steel, single-use bioreactors are more susceptible to potential problems associated with compound leaching into the bioprocessing fluid. As a result, extractable profiling of the single-use system has become essential in the qualification of such systems for its use in drug manufacturing. The aim of this study is to evaluate the effectiveness of an extraction solvent system developed to study the extraction profile of single-use bioreactors in which aqueous-based systems are largely used. The results showed that with a non-targeted analytical approach, the extraction solvent allowed the generation and identification of an array of extractable compounds from four commercially available single-use bioreactors. Most of extractables are degradation products of polymer additives, among which was a compound that was later found to be highly detrimental to mammalian cell growth.


Pda Journal of Pharmaceutical Science and Technology | 2016

Characterization of Protein Aggregating Tungstates: Electrospray Mass Spectrometry Analysis of Extracts from Prefilled Syringes and from Tungsten Pins Used in the Manufacture of Syringes

Michael Ronk; Hans Lee; Kiyoshi Fujimori; Ping Yeh; Yasser Nashed-Samuel

Glass prefilled syringes are increasingly becoming a container of choice for storing and administering therapeutic protein products to patients. Tungsten leaching from a PFS is known to induce protein particle formation, and the source was traced to the tungsten pins used in the manufacturing process of the syringe barrels. Study of the tungstates present in extracts from both tungsten pins used in the syringe manufacturing process and from single syringes from various suppliers was undertaken. Electrospray mass spectrometry was chosen as a technique with the sensitivity to characterize tungstates at levels (∼1 ppm of elemental tungsten) observed in single syringes. Extraction solvents were chosen to simulate the range (pH 4.0–7.0) typically used for therapeutic protein formulation. A commercial product formulation buffer was also used as an extraction solution to characterize tungstate species used for tungsten spiking studies of protein. All pin and syringe extracts from various manufacturers were similar in regards to containing stable Na/K containing lacunary polytungstate ([W11O39]7−) species, which were the main species present in syringe extracts and are different than the metatungstate ([W12O39]6−) species identified in commercially available sodium polytungstate and as the main species in pin extracts. These stable Na/K containing polytungstates species present in pin and syringe extracts are likely formed during the glass manufacturing process at >400 °C and may have the capability to subsequently form larger polytungstate complexes. LAY ABSTRACT: Glass prefilled syringes are a type of container used for storing and administering biotechnology medicines to patients. The manufacturing process for the syringes may lead to very low levels of the metal tungsten being present in the syringes, and thus in the medicine stored in the syringes. The presence of tungsten in certain biotechnology medicines has been shown to cause changes to the medicine. Understanding something that can cause a medicine to change is an important part of producing safe and effective medicines for patients. The study described in this article sought to increase understanding by characterizing the form of tungsten observed in syringes from a number of vendors. Study of the tungsten present in syringes from four vendors indicates the same form of tungsten is observed regardless of the vendor. The study also found that the form of tungsten differed from that expected.


Pda Journal of Pharmaceutical Science and Technology | 2013

Development of an Inductively Coupled Plasma Mass Spectrometry Method for Quantification of Extracted Tungsten from Glass Prefilled Syringes Used as a Primary Packaging for Pharmaceutical and Therapeutic Protein Products

Kiyoshi Fujimori; Hans Lee; Joseph Phillips; Yasser Nashed-Samuel

Leachable tungsten is associated with protein aggregation and precipitation in glass prefilled syringes, and this may trigger immunogenicity concerns. Determining the level of leachable tungsten from glass prefilled syringes is critical for assuring quality of certain biopharmaceutical drug products. An inductively coupled plasma mass spectrometry (ICP/MS) quantification method was developed to determine elemental tungsten in syringe extracts. The syringe was extracted using 0.5% ammonium hydroxide (pH 11), heat (75 °C), and sonication. The resulting extraction solution was diluted 10 fold prior to ICP/MS analysis. Syringes from three syringe lots containing known low (average 28.0 ng), medium (average 189.4 ng), and high (average 631.9 ng) levels of tungsten were extracted three times each. All syringes with total tungsten greater than 14 ng had extraction efficiency greater than 90% with the first two extractions combined. The calibration curve range was 0.1–200 μg/L tungsten with iridium as the internal standard, and the correlation coefficient was ≥1.0000. The limit of detection at 0.05 μg/L tungsten and limit of quantification at 0.1 μg/L tungsten were determined as having a signal-to-noise ratio greater than 40 and 80 times compared with the blank, respectively. The ICP/MS method was selective for tungsten and iridium in the presence of other metals. Accuracies of spiked tungsten, at three different levels, in syringe extracts were >99% with precision relative standard deviation (RSD) (n = 5) of ≤1%. The matrix effect of the syringe extract media and carryover of tungsten and internal standard were negligible. Onboard stability of the syringe extracts over three days had a tungsten concentration RSD (n = 3) of ≤1%. Syringe extractions performed with 0.45–0.55% ammonium hydroxide had spike recoveries ≥99% and demonstrated extraction solution robustness. Quantified residual tungsten in syringes extract by ammonium hydroxide and analyzed by ICP/MS was acceptable based on extraction efficiency and method performance. LAY ABSTRACT: Elemental tungsten is a known leachable from glass prefilled syringe used as a ready-to-inject drug device in the pharmaceutical industry. Tungsten is a residual artifact from the manufacturing process of the syringe. The leachable tungsten level is of a concern, as it can affect the quality of the filled drug product. To understand possible leachable quantity of tungsten from the prefilled syringe, a tungsten extraction conditions and quantification method were developed. Double extraction of the syringe with 0.5% ammonium hydroxide (pH 11), heat (75 °C), and sonication was able to efficiently extract 90% of the total tungsten from syringe. An inductively coupled plasma mass spectrometry method was qualified to selectively, accurately, and precisely quantify the extracted tungsten. The developed extraction and quantification method was acceptable in determining possible leachable tungsten from prefilled syringes.


Pda Journal of Pharmaceutical Science and Technology | 2016

Comparison of Acid Titration, Conductivity, Flame Photometry, ICP-MS, and Accelerated Lamellae Formation Techniques in Determining Glass Vial Quality

Kiyoshi Fujimori; Hans Lee; Christopher Sloey; Margaret Speed Ricci; Zai-Qing Wen; Joseph Phillips; Yasser Nashed-Samuel

Certain types of glass vials used as primary containers for liquid formulations of biopharmaceutical drug products have been observed with delamination that produced small glass like flakes termed lamellae under certain conditions during storage. The cause of this delamination is in part related to the glass surface defects, which renders the vials susceptible to flaking, and lamellae are formed during the high-temperature melting and annealing used for vial fabrication and shaping. The current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. Four alternative techniques with improved throughput, convenience, and/or comprehension were examined by subjecting seven lots of vials to analysis by all techniques. The first three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the same sample pools as acid titration. All three showed good correlation with alkalinity: conductivity (R2 = 0.9951), flame photometry sodium (R2 = 0.9895), and several elements by inductively coupled plasma mass spectrometry [(sodium (R2 = 0.9869), boron (R2 = 0.9796), silicon (R2 = 0.9426), total (R2 = 0.9639)]. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and then inspected those vials visually for lamellae. The visual inspection results without the lot with different processing condition correlated well with alkalinity (R2 = 0.9474). Due to vial processing differences affecting alkalinity measurements and delamination propensity differently, the ratio of silicon and sodium measurements from inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality and vial propensity for lamellae formation. The other techniques of conductivity, flame photometry, and accelerated lamellae formation condition may still be suitable for routine screening of vial lots produced under consistent processes. LAY ABSTRACT: Recently, delamination that produced small glass like flakes termed lamellae has been observed in glass vials that are commonly used as primary containers for pharmaceutical drug products under certain conditions during storage. The main cause of these lamellae was the quality of the glass itself related to the manufacturing process. Current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. As alternative to the European Pharmacopoeia method, four other techniques were assessed. Three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the vial extract pool as acid titration to quantify quality, and they demonstrated good correlation with original alkalinity. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and the vials were then inspected visually for lamellae. The accelerated lamellae formation technique also showed good correlation with alkalinity. Of the new four techniques, inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality even with differences in processing between vial lots. Other three techniques were still suitable for routine screening of vial lots produced under consistent processes.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Detection of adulteration in acetonitrile.

Guoxiang Chen; Kiyoshi Fujimori; Hans Lee; Yasser Nashed-Samuel; Joseph Phillips; Gary Rogers; Hong Shen; Chanel Yee

To address the increasing concern that acetonitrile may be intentionally adulterated to meet the shortfall in global supplies resulting from a downturn in its manufacturing, three analytical techniques were examined in this study. Gas Chromatography with Thermal Conductivity Detection (GC-TCD), Near Infrared (NIR) spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy were assessed for their ability to detect and quantify potential adulterants including water, alternative organic solvents, and by-products associated with the production of acetonitrile. The results of the assessment of the three techniques for acetonitrile adulteration testing are discussed.


Pharmaceutical Research | 2017

Chemical and Biophysical Characteristics of Monoclonal Antibody Solutions Containing Aggregates Formed during Metal Catalyzed Oxidation

Linda O. Narhi; Quanzhou Luo; Riccardo Torosantucci; Andrea Hawe; Kiyoshi Fujimori; Yasser Nashed-Samuel; Vibha Jawa; Marisa K. Joubert; Wim Jiskoot

PurposeTo physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO).MethodsTwo monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins.ResultsThe particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified.ConclusionThe extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.

Collaboration


Dive into the Kiyoshi Fujimori's collaboration.

Researchain Logo
Decentralizing Knowledge