Kiyoshi Furuichi
Astellas Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiyoshi Furuichi.
Pharmacological Reviews | 2003
George A. Gutman; K. George Chandy; John P. Adelman; Jayashree Aiyar; Douglas A. Bayliss; David E. Clapham; Manuel Covarriubias; Gary V. Desir; Kiyoshi Furuichi; Barry Ganetzky; Maria L. Garcia; Stephan Grissmer; Lily Yeh Jan; Andreas Karschin; Donghee Kim; Sabina Kuperschmidt; Yoshihisa Kurachi; Michel Lazdunski; Florian Lesage; Henry A. Lester; David McKinnon; Colin G. Nichols; I. T. A. O'kelly; Jonathan Robbins; Gail A. Robertson; Bernardo Rudy; Michael C. Sanguinetti; Susumu Seino; Walter Stuehmer; Michael M. Tamkun
This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.1 The complete Compendium, including data tables for each member of the potassium channel family can be found at http://www.iuphar-db.org/iuphar-ic/.
Oncogene | 2003
Tohru Hirose; Yoshihiro Sowa; Senye Takahashi; Shoichi Saito; Chikako Yasuda; Nobuaki Shindo; Kiyoshi Furuichi; Toshiyuki Sakai
Histone deacetylase (HDAC) inhibitors cause growth arrest at the G1 and/or G2/Mu2009phases, and induce differentiation and/or apoptosis in a wide variety of tumour cells. The growth arrest at G1u2009phase by HDAC inhibitors is thought to be highly dependent on the upregulation of p21/WAF1, but the precise mechanism by which HDAC inhibitors cause G2/M arrest or apoptosis in tumour cells is unknown. Gadd45 causes cell cycle arrest at the G2/Mu2009phase transition and participates in genotoxic stress-induced apoptosis. We show here that it is also induced by a typical HDAC inhibitor, trichostatin A (TSA), through its promoter, in a p53-independent manner. To identify the mechanism of activation of the gadd45 promoter, we performed luciferase reporter analyses and electrophoretic mobility shift assays. These revealed that both the Oct-1 and CCAAT sites are needed for the full activation by TSA. We also found that the transcription factors Oct-1 and NF-Y specifically bind to each site. Thus, HDAC inhibitors can induce Gadd45 through its promoter without the need for functional p53, and both the Oct-1 and NF-Y concertedly participate in TSA-induced activation of the gadd45 promoter.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Mitsuyuki Matsumoto; Richard E. Straub; Stefano Marenco; Shun Ichiro Matsumoto; Akihiko Fujikawa; Sosuke Miyoshi; Miwako Shobo; Shinji Takahashi; Junko Yarimizu; Masatoshi Yuri; Masashi Hiramoto; Shuji Morita; Hiroyuki Yokota; Takeshi Sasayama; Kazuhiro Terai; Masayasu Yoshino; Joseph H. Callicott; Michael F. Egan; Andreas Meyer-Lindenberg; Lucas Kempf; Robyn Honea; Radha Krishna Vakkalanka; Jun Takasaki; Masazumi Kamohara; Takatoshi Soga; Hideki Hiyama; Hiroyuki Ishii; Ayako Matsuo; Shintaro Nishimura; Nobuya Matsuoka
The G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3′ UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy.
Biochemical and Biophysical Research Communications | 2012
Tomohiro Yamauchi; Naoto Nakamura; Masashi Hiramoto; Masatoshi Yuri; Hiroyuki Yokota; Masanori Naitou; Masahiro Takeuchi; Kentaro Yamanaka; Aya Kita; Takahito Nakahara; Isao Kinoyama; Akira Matsuhisa; Naoki Kaneko; Hiroshi Koutoku; Masao Sasamata; Masato Kobori; Masao Katou; Shuichi Tawara; Shigeki Kawabata; Kiyoshi Furuichi
YM155, a small-molecule survivin suppressant, specifically binds to the transcription factor ILF3, which regulates the expression of survivin[1]. In this experiment we have demonstrated that p54(nrb) binds to the survivin promoter and regulates survivin expression. p54(nrb) forms a complex with ILF3, which directly binds to YM155. YM155 induces disruption of the ILF3/p54(nrb) complex, which results in a different subcellular localization between ILF3 and p54(nrb). Thus, identification of molecular targets of YM155 in suppression of the survivin pathway, might lead to development of its use as a novel potential target in cancers.
Molecular & Cellular Proteomics | 2012
Naoto Nakamura; Tomohiro Yamauchi; Masashi Hiramoto; Masatoshi Yuri; Masanori Naito; Masahiro Takeuchi; Kentaro Yamanaka; Aya Kita; Takahito Nakahara; Isao Kinoyama; Akira Matsuhisa; Naoki Kaneko; Hiroshi Koutoku; Masao Sasamata; Hiroyuki Yokota; Shigeki Kawabata; Kiyoshi Furuichi
Survivin is responsible for cancer progression and drug resistance in many types of cancer. YM155 selectively suppresses the expression of survivin and induces apoptosis in cancer cells in vitro and in vivo. However, the mechanism underlying these effects of YM155 is unknown. Here, we show that a transcription factor, interleukin enhancer-binding factor 3 (ILF3)/NF110, is a direct binding target of YM155. The enhanced survivin promoter activity by overexpression of ILF3/NF110 was attenuated by YM155 in a concentration-dependent manner, suggesting that ILF3/NF110 is the physiological target through which YM155 mediates survivin suppression. The results also show that the unique C-terminal region of ILF3/NF110 is important for promoting survivin expression and for high affinity binding to YM155.
European Journal of Pharmacology | 1999
Shinobu Mochizuki; Kiyoshi Furuichi
The pharmacological properties of rat and human 5-HT3 receptors expressed in Xenopus oocytes were assessed using a two-electrode voltage clamp technique. Meta-chlorophenylbiguanide (mCPBG), a 5-HT3 receptor-selective agonist, elicited typical current responses in both rat and human 5-HT3 receptor-expressing oocytes. However, the EC50 value for rat 5-HT3 receptors was 13-fold lower than for human 5-HT3 receptors. Using several chimeric human-rat 5-HT3 receptors, we identified a potential domain responsible for this difference in mCPBG-response. The domain is in the N-terminal extracellular region adjacent to the first transmembrane domain of rat 5-HT3 receptors and includes a rat-specific seven amino acid sequence (Phe197, Thr198, Lys199, Gln201, Ile205, Thr207 and Ser210). Replacement of corresponding amino acids in human 5-HT3 receptors by rat receptor residues increased the potency of mCPBG on human receptors indicating these amino acids play an important role in the pharmacological response to mCPBG.
Amino Acids | 1999
Shinobu Mochizuki; Akira Miyake; Kiyoshi Furuichi
SummaryHuman 5-HT3 receptors expressed in HEK 293 cells were studied using patch-clamp techniques. The permeability ratios of cations to Na+ were Li+, 1.16; K+, 1.04; Rb+, 1.11; Cs+ 1.11; NMDG+, 0.04; Ca2+, 0.49, and Mg2+, 0.37. The permeability sequence of the alkali metal cations was Li+ > Rb+ = Cs+ > K+ > Na+. Increased external concentrations of Ca2+ or Mg2+ decreased 5-HT-induced currents at all potentials tested in a voltage-independent manner. The single-channel conductance of human 5-HT3 receptors measured by fluctuation analysis of whole-cell currents was 790 ± 100fS. Differences in the basic properties of 5-HT3 receptors between species may explain interspecies differences in pharmacological properties.
Mammalian Genome | 2008
Takao Suzuki; Maki Moritani; Masayasu Yoshino; Mitsuhiro Kagami; Shoji Iwasaki; Kouichi Nishimura; Masahiko Akamatsu; Masato Kobori; Hitoshi Matsushime; Masao Kotoh; Kiyoshi Furuichi; Mitsuo Itakura
When the homozygous active form of porcine TGF-β1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance. To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the “transgenic mice” for quantitative trait loci (QTL) analysis. Genome-wide scans of F2-D Tgf/Tgf (D2xa0×xa0NOD) and F2-C Tgf/Tgf (C3Hxa0×xa0NOD), homozygous for the TGF-β1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F2-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F2-C Tgf/Tgf. Tdn1 (Chr 13, LODxa0=xa04.39), and Tcn3 (Chr 2, LODxa0=xa04.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LODxa0=xa04.38) and Tcn4 (Chr 14, LODxa0=xa03.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LODxa0=xa04.41) and Tcn5 (Chr 18, LODxa0=xa04.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LODxa0=xa04.90). Identification of six QTLs for diabetes-related traits in F2-D Tgf/Tgf and F2-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type 2 diabetes.
Cancer Research | 2012
Naoto Nakamura; Tomohiro Yamauchi; Masashi Hiramoto; Masatoshi Yuri; Masanori Naito; Masahiro Takeuchi; Kentaro Yamanaka; Takahito Nakahara; Aya Kita; Isao Kinoyama; Akira Matsuhisa; Masao Sasamata; Hiroyuki Yokota; Shigeki Kawabata; Kiyoshi Furuichi
Survivin, a member of the anti-apoptosis proteins family, is highly expressed in all primary tumor types, and is responsible for cancer progression and drug resistance in many types of cancer. YM155, a small chemical compound, selectively suppressed the expression of survivin and induced apoptosis in cancer cells both in vitro and in vivo. However, the mechanisms underlying the suppression of survivin expression by YM155 are unknown. In order to identify the molecular targets and analyze the drug mechanism of action, affinity purification was performed using an active analogue of YM155. We identified interleukin enhancer-binding factor 3 (ILF3) as the binding target of YM155. From the complex analysis of ILF3 and survivin promoter sequence, we also found that ILF3 forms a complex with p54nrb transcription factor, and then binds to the survivin promoter. Overexpression of ILF3 enhanced survivin promoter activity, which was attenuated by YM155 in a concentration-dependent manner. Furthermore, the ILF3/p54nrb complex was disrupted by YM155, thus dispersing the components in the nucleus.In conclusion, our study suggests that binding to ILF3 by YM155 causes the dissociation of the ILF3/p54nrb complex, thus inhibits ILF3 dependent survivin expression. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4756. doi:1538-7445.AM2012-4756
Proceedings of the National Academy of Sciences of the United States of America | 2006
Shunichiro Matsumoto; Chihiro Yamazaki; Koh-hei Masumoto; Mamoru Nagano; Masanori Naito; Takatoshi Soga; Hideki Hiyama; Mitsuyuki Matsumoto; Jun Takasaki; Masazumi Kamohara; Ayako Matsuo; Hiroyuki Ishii; Masato Kobori; Masao Katoh; Hitoshi Matsushime; Kiyoshi Furuichi; Yasufumi Shigeyoshi