Kiyoshi Kanekawa
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiyoshi Kanekawa.
Applied Physics Letters | 1968
Tadatsugu Itoh; Taroh Inada; Kiyoshi Kanekawa
Radiation damages created in silicon single crystals bombarded with 10‐keV aluminum ions were examined by means of electron diffraction method. A deep penetration of aluminum ion in silicon was observed, extending to 0.58 μ. This penetration was depressed by removing the bombarded surface layer about 800 A in thickness before annealing. From these results, we interpret the deep penetration as a radiation enhanced diffusion effect.
Sensors | 2010
Iwao Matsuya; Ryuta Katamura; Maya Sato; Miroku Iba; Kiyoshi Kanekawa; Motoichi Takahashi; Tomohiko Hatada; Yoshihiro Nitta; Takashi Tanii; Shuichi Shoji; Akira Nishitani; Iwao Ohdomari
We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration.
Proceedings of SPIE | 2011
Iwao Matsuya; Ryuta Katamura; Maya Sato; Miroku Iba; Kiyoshi Kanekawa; Motoichi Takahashi; Tomohiko Hatada; Yoshihiro Nitta; Takashi Tanii; Shuichi Shoji; Akira Nishitani; Iwao Ohdomari
We have developed a novel relative-story displacement sensor capable of measuring the 5-degree-of-freedom movement of building layers for structural health monitoring. Three pairs of infrared-light emitting diode arrays and positionsensitive detector units were used for simultaneously measuring the relative-story displacement, the inclination angle of the lower layer, and the torsion angle between two adjacent layers. For verification, laboratory tests were carried out using a shaking table, a motorized micrometer and a rotation stage. In the static experiment, it is verified that the local inclination angle and the torsion angle can be measured as well as the relative-story displacement using the sensor system. The resolution of the sensor system in the displacement measurement, that in the inclination angle measurement, and that in the torsion angle measurement were evaluated to be 0.10 mm, 34.4 μrad, and 14.6 μrad, respectively. In the dynamic response experiment, the accuracy of the sensor system was experimentally evaluated to be 0.20 mm in the relative-displacement measurement, 110 μrad in the inclination angle measurement, and 90 μrad in the torsion angle measurement, respectively. These results indicate that the developed sensor system has a sufficient accuracy for the structural health diagnostics of buildings.
ieee sensors | 2010
Iwao Matsuya; Maya Sato; Miroku Iba; Kiyoshi Kanekawa; Takashi Tanii; Akira Nishitani; Iwao Ohdomari; Ryuta Katamura
A relative-story displacement sensor for measuring the ceiling-floor displacement and the floor inclination angle was developed. Three pairs of position-sensitive detector (PSD) units and light emitting diode (LED) arrays were utilized for the measurement. The measurement accuracy of the sensor was evaluated using a shaking table and a θ-stage. The outputs from the developed sensor agreed well with the reference, and the accuracy was evaluated to be approximately 0.15 mm in the displacement and 0.1 mrad in the local inclination angle. These results inidicate that the developed sensor resolves the angular error problem on the relative-story displacement measurement and is applicable for assessing the sefety of actual buildings.
Ieej Transactions on Electrical and Electronic Engineering | 2011
Iwao Matsuya; Maya Sato; Kiyoshi Kanekawa; Yoshihiro Nitta; Motoichi Takahashi; Satoru Miura; Yasutsugu Suzuki; Tomohiko Hatada; Ryuta Katamura; Takashi Tanii; Shuichi Shoji; Akira Nishitani; Iwao Ohdomari
Ieej Transactions on Electrical and Electronic Engineering | 2010
Kiyoshi Kanekawa; Iwao Matsuya; Maya Sato; Motoichi Takahashi; Satoru Miura; Yasutsugu Suzuki; Tomohiko Hatada; Ryuta Katamura; Yoshihiro Nitta; Takashi Tanii; Shuichi Shoji; Akira Nishitani; Iwao Ohdomari
Journal of Structural and Construction Engineering (transactions of Aij) | 2010
Tomohiko Hatada; Motoichi Takahashi; Yasutsugu Suzuki; Iwao Matsuya; Kiyoshi Kanekawa; Yoshihiro Nitta; Akira Nishitani
Earthquake Engineering & Structural Dynamics | 2016
Ping Xiang; Akira Nishitani; Shohei Marutani; Kenzo Kodera; Tomohiko Hatada; Ryuta Katamura; Kiyoshi Kanekawa; Takashi Tanii
Aij Journal of Technology and Design | 2010
Iwao Matsuya; Makoto Oshio; Maya Sato; Kiyoshi Kanekawa; Motoichi Takahashi; Satoru Miura; Yasutsugu Suzuki; Tomohiko Hatada; Ryuta Katamura; Yoshihiro Nitta; Takashi Tanii; Shuichi Shoji; Akira Nishitani; Iwao Ohdomari
5th Asian-Pacific Symposium on Structural Reliability and its Applications | 2012
Akira Nishitani; Chisa Matsui; Yoshihiro Nitta; Tomohiko Hatada; Ryuta Katayama; Iwao Matsuya; Kiyoshi Kanekawa; Takashi Tanii; Shuichi Shoji; Iwao Ohdomari