Kiyoshi Nagasuga
Mie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiyoshi Nagasuga.
Plant and Cell Physiology | 2008
Mari Murai-Hatano; Tsuneo Kuwagata; Junko Sakurai; Hiroshi Nonami; Arifa Ahamed; Kiyoshi Nagasuga; Toshinori Matsunami; Keiko Fukushi; Masayoshi Maeshima; Masumi Okada
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.
Plant and Cell Physiology | 2008
Kensaku Suzuki; Kiyoshi Nagasuga; Masumi Okada
Root temperature is found to be a very important factor for leaves to alter the response and susceptibility to chilling stress. Severe visible damage was observed in the most active leaves of seedlings of a japonica rice (Oryza sativa cv. Akitakomachi), e.g. the third leaf at the third-leaf stage, after the treatment where only leaves but not roots were chilled (L/H). On the other hand, no visible damage was observed after the treatment where both leaves and roots were chilled simultaneously (L/L). The chilling injury induced by L/H, a novel type of chilling injury, required the light either during or after the chilling in order to develop the visible symptoms such as leaf bleaching and tissue necrosis. Chlorophyll fluorescence parameters measured after various lengths of chilling treatments showed that significant changes were induced before the visible injury. The effective quantum yield and photochemical quenching of PSII dropped dramatically within 24 h in both the presence and absence of a 12 h light period. The maximal quantum yield and non-photochemical quenching of PSII decreased significantly only in the presence of light. On the other hand, L/H chilling did not affect the function of PSI, but caused a significant decrease in the electron availability for PSI. These results suggest that the leaf chilling with high root temperature destroys some component between PSII and PSI without the aid of light, which causes the over-reduction of PSII in the light, and thereby the visible injury is induced only in the light.
Plant and Cell Physiology | 2012
Tsuneo Kuwagata; Junko Ishikawa-Sakurai; Hidehiro Hayashi; Kiyoshi Nagasuga; Keiko Fukushi; Arifa Ahamed; Katsuko Takasugi; Maki Katsuhara; Mari Murai-Hatano
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.
Plant Production Science | 2008
Ken Ishimaru; Naoki Hirotsu; Takayuki Kashiwagi; Yuka Madoka; Kiyoshi Nagasuga; Kiyomi Ono; Ryu Ohsugi
Abstract We analyzed the yield characters of field-grown transgenic potato plants (Solanum tuberosum) carrying a maize gene for sucrose-phosphate synthase (SPS), the key enzyme in sucrose synthesis. The SPS activity in the leaves of transgenic plants (line Ag1203) was 2 times that of the control (cv. May Queen). There was no difference in the photosynthetic CO2 uptake rates between Ag1203 and May Queen plants, and the leaf starch content of Ag1203 was lower. These observations indicate that the introduction of a foreign SPS gene improved the supply of photosynthate from source (leaves) to sink (tubers). Additionally, leaf senescence of the transgenic potato plants was delayed relative to that of May Queen. The average tuber weight and total yield of Ag1203 plants were at least 20% higher, and the tuber sucrose content, which is related to eating quality, was also higher. Increased translocation of photosynthate and longer period of photosynthetic activity in the leaves may have increased the yield of Ag1203. These results suggest that introduction of the SPS gene improved the yield characters and quality of potato tubers under field conditions.
Plant Production Science | 2011
Kiyoshi Nagasuga; Mari Murai-Hatano; Tsuneo Kuwagata
Abstract Chilling is a major constraint in rice production in cool climates. In rice (Oryza sativa L.) plants, both the air temperature and the water (soil) temperature affect various growth processes independently, and low root zone temperature (thus, root temperature) can inhibit rice growth and yield. In this study, we investigated the effect of low root temperature on rice growth in relation to dry matter production and root water uptake. Plants were grown in hydroponic solutions at two temperatures, one equivalent to air temperature and the other 14ºC for 15 d starting 11 d after germination. Low temperature of the solution (low root temperature) inhibited dry matter production of rice plants by decreasing leaf area rather than photosynthetic rate. The response of leaf area was affected by changes in plant water status, that is relative water content (RWC) of stem was decreased by low root temperature resulting in reduced leaf area. The decrease in RWC caused by low root temperature was related to that in root hydraulic conductance (Kr). The responses of transpiration (E) and Kr to the low root temperature depended more on root surface area than on changes in hydraulic conductance per unit root surface area (Lpr). These results suggest that dry matter production under the low root temperature condition is controlled mainly by quantitative growth parameters such as leaf area and root surface area.
Plant Production Science | 2008
Kiyoshi Nagasuga; Fumitake Kubota
Received 9 February 2007. Accepted 9 January 2008. Corresponding author: K. Nagasuga ([email protected], fax +81-059-230-1463, present address; Kii Kuroshio Bio-regional Field Science Center, Faculty of Bioresources, Mie University, Takanoo, Tsu 514-2221, Japan). Effects of Shading on Hydraulic Resistance and Morphological Traits of Internode and Node of Napiergrass (Pennisetum purpureum Schumach.)
Plant Production Science | 2006
Kiyoshi Nagasuga; Fumitake Kubota
Abstract Acclimation to light condition is associated with change in water transport system in napiergrass. In this study, the effects of shading on shoot hydraulic resistance and morphology of napiergrass (Pennisetum purpureum Schumach.) were investigated. In the plants under shading (to 30% of full sunlight) for 30 days (S plants), total hydraulic resistance of a shoot (Rshoot) increased from that of full sunlight (control). In the plants grown under shade condition for 24 d followed by full sunlight conditions for 6 d (SF), the Rshoot value was intermediate between that of control and S plants. A similar response to shading was found in total hydraulic resistance of a stem (Rstem), which accounted for more than 60% of Rshoot, but the total hydraulic resistance of the leaves was not significantly affected by shading. Leaf length, leaf area and stem length were larger, but the stem cross-sectional area (SA) was smaller in S and SF plants than in the control plants. SF plants showed similar leaf length, leaf area and stem length to those in S plants, but the SA in SF plants was slightly larger. Normalization of Rstem by SA and stem length decreased the difference among the treatments, indicating the increase of Rshoot and Rstem under shading resulted from the decrease of SA and the increase of stem length.
Biotronics : reports of Biotron Institute, Kyushu University | 2001
Daisuke Yasutake; Masaharu Kitano; Takuya Araki; Kiyoshi Nagasuga; Toshio Kawano; Michio Hamakoga
Biotronics : reports of Biotron Institute, Kyushu University | 2000
Daisuke Yasutake; Masaharu Kitano; Michio Hamakoga; Takuya Araki; Kiyoshi Nagasuga; Y. Suzuki
Biotronics : reports of Biotron Institute, Kyushu University | 2000
Kiyoshi Nagasuga; Daisuke Yasutake; Takuya Araki; Masaharu Kitano