Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyoshi Noguchi is active.

Publication


Featured researches published by Kiyoshi Noguchi.


Xenobiotica | 2007

Functional involvement of organic cation transporter1 (OCT1/Oct1) in the hepatic uptake of organic cations in humans and rats

K.-I. Umehara; Takafumi Iwatsubo; Kiyoshi Noguchi; Hidetaka Kamimura

The contribution of organic cation transporters to the saturable component in the hepatic uptake of 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), cimetidine, and metformin was examined by the use of human/rat organic cation transporter (hOCT1/rOct1)-expressing cells and human/rat hepatocytes. Transfection of rOct1 resulted in a considerable increase in the uptake of metformin, whereas that of hOCT1 resulted in only a slight increase. All test compounds (MPP, TEA, cimetidine, and metformin) accumulated in human and rat hepatocytes in a carrier-mediated manner. The Km values for the uptake of MPP, TEA, cimetidine, and metformin into human and rat hepatocytes were comparable with those into hOCT1 and rOct1-expressing cells, respectively. In addition, the relative uptake activities, which were obtained by normalizing the intrinsic uptake clearances of TEA, cimetidine, and metformin against those values of MPP in human and rat hepatocytes, were similar with the uptake activities in hOCT1 and rOct1, respectively. These results suggest that the saturable component in the hepatic uptake of these cationic compounds may be mediated mainly by hOCT1/rOct1; therefore, it is meaningful to evaluate the saturable uptake profile of cationic compounds by the liver using both hOCT1/rOct1-expressing cells and human/rat hepatocytes.


Xenobiotica | 2007

Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates

K.-I. Umehara; Takafumi Iwatsubo; Kiyoshi Noguchi; Hidetaka Kamimura

In this study, the comparison of the transport of substrates (1-methyl-4-phenylpydinium (MPP) and tetraethyl ammonium (TEA)) and the inhibition potency of the inhibitors (biguanides and H2-blockers) for human and rat organic cation transporters (hOCTs and rOcts), and the inhibition type of inhibitors for these transporters were investigated using HEK293 cells that stably express hOCT/rOct. The concentration-dependent uptake of [3H]-MPP and [14C]-TEA by hOCT1-3/rOct1-3 had Km values similar to those in the literature. It was also deduced that MPP and TEA are competitive inhibitors for hOCT1-2/rOct1-2. The Ki values for phenformin inhibition of [3H]-MPP and [14C]-TEA uptake by hOCT1-3/rOct1-3 were lower than that for metformin. The [3H]-MPP uptake by hOCT1/rOct1 and hOCT3/rOct3 was inhibited by famotidine and ranitidine whereas that by hOCT2/rOct2 was not. The inhibitory potency of cimetidine for hOCT1-2 was very weak. In most cases, the differences in the Vmax/Km values of substrates and the Ki values of inhibitors between hOCT and rOct were minor. The acquisition of information on OCT/Oct mediated-transport and/or inhibition such as that presented in this report is very useful for further understanding of certain aspects of uptake, distribution, and excretion for drug candidates.


Xenobiotica | 2004

Identification of the novel canine CYP1A2 1117 C>T SNP causing protein deletion

D. Tenmizu; Y. Endo; Kiyoshi Noguchi; Hidetaka Kamimura

The pharmacokinetics of YM-64227 (4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1H)-one), a novel and selective phosphodiesterase type 4 inhibitor, was characterized in beagle dogs. Based on the plasma parent drug to major hydroxylated metabolite ratio, 21 dogs were phenotyped as 16 extensive metabolizers (EM) and five poor metabolizers (PM). Nucleotide sequences of CYPs 1A2, 2B11, 2C21, 2D15, 2E1 and 3A12 were investigated in the EM and PM dogs. A CYP1A2 1117 C>T single nucleotide polymorphism was found, which resulted in an amino acid change from an Arg codon to a stop codon at position 373. All dogs phenotyped as PM were T/T homozygous, whereas EMs were C/C homozygous and C/T heterozygous. In Western blotting of liver microsomes, CYP1A protein expression was detected in the C/C and C/T types, but not in the T/T type. Of 65 dogs genotyped using genome DNA, the frequencies of the C and T alleles were 0.61 and 0.39, respectively, suggesting approximately 15% of the dogs would not express the CYP1A2 protein. The findings provide a coherent explanation for the inter-individual variability in the pharmacokinetics of CYP1A2 substrate drugs in dogs.


Xenobiotica | 2008

Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions

K.-I. Umehara; Takafumi Iwatsubo; Kiyoshi Noguchi; Takashi Usui; Hidetaka Kamimura

The inhibitory effects of cationic drugs (β-adrenoreceptor antagonists, calcium (Ca)-channel blocker, If channel inhibitor, antiarrhythmic drugs, and antibacterial drugs) that inhibit 1-methyl-4-phenylpyridinium (MPP) and/or metformin uptake into hOCT1–3/rOct1–3-expressing cells and human/rat hepatocytes were investigated in this study. The drug–drug interaction (DDI) potential of these drugs for the hOCT/rOct-mediated hepatic/renal uptake process was also assessed. The IC50 values of cardiovascular drugs, including an If channel inhibitor with a new mechanism of action, were greater for hOCT2/rOct2 than those for hOCT1/rOct1 or hOCT3/rOct3. No species differences in these values were observed between hOCTs and rOcts. As for hOCT2-mediated uptake, the IC50 values of quinidine and the If channel inhibitor for metformin uptake were lower than those for MPP uptake. However, previous clinical studies found that the IC50 values of these drugs for hOCT1/rOct1 and hOCT2/rOct2 were much greater than their unbound plasma concentrations, which suggests that the DDIs of these cationic compounds may not be related to hOCT/rOct-mediated hepatic/renal uptake pathways. In addition, investigation of the luminal transporters of cationic compounds in the kidney, as well as the in vitro DDI potential of their inhibitors, is important for the clarification of cationic compound DDIs in humans.


Xenobiotica | 2012

Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4

Masato Ohbuchi; Kiyoshi Noguchi; Akio Kawamura; Takashi Usui

Inhibitory potential of proton pump inhibitors (PPIs) and famotidine, an H2 receptor antagonist, on the metabolic activation of clopidogrel was evaluated using recombinant CYP2B6, CYP2C19 and CYP3A4. Formation of the active metabolite from an intermediate metabolite, 2-oxo-clopidogrel, was investigated by liquid chromatography–tandem mass spectrometry and three peaks corresponding to the pharmacologically active metabolite and its stereoisomers were detected. Omeprazole potently inhibited clopidogrel activation by CYP2C19 with an IC50 of 12.8 μmol/L and more weakly inhibited that by CYP2B6 and CYP3A4. IC50 of omeprazole for CYP2C19 and CYP3A4 was decreased about two- and three-fold, respectively, by 30-min preincubation with NADPH. Lansoprazole, esomeprazole, pantoprazole, rabeprazole and rabeprazole thioether, a major metabolite, also inhibited metabolic activation by CYP2C19, with an IC50 of 4.3, 8.9, 48.3, 36.2 and 30.5 μmol/L, respectively. In contrast, famotidine showed no more than 20% inhibition of clopidogrel activation by CYP2B6, CYP2C19 and CYP3A4 at up to 100 μmol/L and had no time-dependent CYP2C19 and CYP3A4 inhibition. These results provide direct evidence that PPIs inhibit clopidogrel metabolic activation and suggest that CYP2C19 inhibition is the main cause of drug–drug interaction between clopidogrel and omeprazole. Famotidine is considered as a safe anti-acid agent for patients taking clopidogrel.


Drug Metabolism and Disposition | 2006

The canine CYP1A2 deficiency polymorphism dramatically affects the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]-pyrimidine-2-(1H) -one (YM-64227), a phosphodiesterase type 4 inhibitor

Daisuke Tenmizu; Kiyoshi Noguchi; Hidetaka Kamimura; Hisakazu Ohtani; Yasufumi Sawada

In a previous study, it was shown that the novel canine single nucleotide polymorphism (SNP) CYP1A2 1117C>T yields an inactive enzyme. In this study, the effect that this SNP has on the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1H)-one (YM-64227) was investigated. Plasma concentrations of the unchanged drug and five of its metabolites (MM-1 to MM-5) were determined after either intravenous or oral administration of YM-64227 to genotyped dogs (C/C, C/T, and T/T groups). Liver microsomes were prepared from these dogs to determine the in vitro metabolic clearance of YM-64227. After a single oral administration, the maximum plasma concentration and absolute bioavailability of YM-64227 in the T/T group were 17.1 times and 27.2 times higher than those in the C/C group, respectively, whereas the pharmacokinetics of YM-64227 after intravenous administration were not affected by genotype. The metabolic profiles in the T/T group were quite distinct from the others; i.e., the main metabolite was MM-2 in the C/C group, whereas MM-1 and MM-5 were the main metabolites in the T/T group. The formation clearances of MM-2 and MM-3 in the microsomes derived from T/T type dogs were significantly lower, whereas those of MM-1, MM-4, and MM-5 were not affected. A statistically significant correlation was observed between the in vivo and in vitro metabolic intrinsic clearances (r = 0.82, p < 0.001). The canine CYP1A2 1117C>T SNP proved to be responsible for a substantial portion of the interindividual variability in the pharmacokinetics of YM-64227.


Xenobiotica | 2008

Comparative evaluation of absorption, distribution, and excretion of YM758, a novel If channel inhibitor, between albino and non-albino rats

K.-I. Umehara; K. Seya; Takuya Sonoda; E. Nakamura; Kiyoshi Noguchi; Takashi Usui; Hidetaka Kamimura

1. YM758 is a novel If channel inhibitor for the treatment of stable angina and atrial fibrillation. The absorption, distribution, and excretion of YM758 have been investigated in albino and non-albino rats after a single oral administration of 14C-YM758 monophosphate. 2. YM758 was well absorbed from all segments of the gastrointestinal tract except for the stomach. After oral administration, the ratio of AUC0–1 h between the plasma concentrations of radioactivity and the unchanged drug was estimated to be 17.7%, which suggests metabolism. 3. The distribution of the radioactivity derived from 14C-YM758 in tissues was evaluated both in albino and non-albino rats. The radioactivity concentrations in most tissues were higher than those in plasma, which indicates that the radioactivity is well distributed to tissues. Extensive accumulation and slower elimination of radioactivity were noted in the thoracic aorta of albino and non-albino rats as well as in the eyeballs of non-albino rats. The recovery rates of radioactivity in urine and bile after oral dosing to bile duct-cannulated albino rats were 17.8% and 57.3%, respectively. 4. These results suggest that YM758 was extensively absorbed, subjected to metabolism, and excreted mainly into the bile after oral administration to rats, and extensive accumulation of the unchanged drug and/or metabolites into tissues such as the thoracic aorta and eyeballs was observed.


Drug Metabolism and Disposition | 2006

Elucidation of the effects of the CYP1A2 deficiency polymorphism in the metabolism of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1h)-one (YM-64227), a phosphodiesterase type 4 inhibitor, and its metabolites in dogs.

Daisuke Tenmizu; Kiyoshi Noguchi; Hidetaka Kamimura

The canine CYP1A2 1117 C>T single nucleotide polymorphism is responsible for a substantial portion of the interindividual variability seen in the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1H)-one (YM-64227). The purpose of this study is to investigate the contribution of CYP1A2 to the metabolism of YM-64227 and its five metabolites (MM-1 to MM-5), as well as to determine the interindividual variability between the pharmacokinetic profiles of the compounds with respect to the CYP1A2 deficiency polymorphism. α-Naphthoflavone and anti-CYP1A1/2 antibody inhibited the metabolic activities at which MM-2 and MM-3 were formed from YM-64227 in C/C- and C/T-type microsomes. In T/T type, the rate of MM-2 and MM-3 formation was lower, and α-naphthoflavone and anti-CYP1A1/2 antibody were shown to have no effect. A positive correlation between the overall metabolism of YM-64227 and phenacetin O-deethylation, a CYP1A2 activity marker, was observed in all the genotypes. The in vitro metabolic clearances in the T/T type of MM-1, MM-3, MM-4, and MM-5 were less than 50% lower than those in the C/C type. The anti-CYP1A1/2 antibody inhibited the metabolism of MM-1, MM-3, MM-4, and MM-5 in the C/C and C/T types. These results suggest that the formation of MM-2 and MM-3 from YM-64227 is catalyzed by CYP1A2, and that CYP1A2 contributes mainly to the subsequent metabolism of the primary metabolites of YM-64227, with the exception of MM-2. It is possible that the interindividual variability of YM-64227 with respect to the CYP1A2 deficiency polymorphism is caused by a decrease in the metabolic activities of both the unchanged drug and its metabolites.


Drug Metabolism and Disposition | 2009

Identification of human metabolites of YM758, a novel If channel inhibitor, and investigation of the transporter-mediated renal and hepatic excretion of these metabolites

Ken-ichi Umehara; Nobuaki Shirai; Takafumi Iwatsubo; Kiyoshi Noguchi; Takashi Usui; Hidetaka Kamimura

(–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758) is a novel inhibitor of the “funny” If current channel (If channel) that is expressed in the sinus node of heart and is being developed as a treatment for stable angina and atrial fibrillation. Its metabolites were identified in human urine, plasma, and feces by radio-high-performance liquid chromatography and liquid chromatographytandem mass spectrometry analyses after oral administration of [14C]YM758. 6,7-Dimethoxy-2-[(3R)-piperidin-3-ylcarbonyl]-1,2,3,4-tetrahydroisoquinoline (YM-252124), (5R)-5-[(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)carbonyl]piperidin-2-one (YM-385459), 2-{[(3R)-1-{2-[(4-fluorobenzoyl)amino]ethyl}piperidin-3-yl]carbonyl}-7-methoxy-1,2,3,4-tetrahydroisonolin-6-yl β-d-glucopyranosiduronic acid (AS2036329), and the unchanged drug were detected as major constituents in both urine and plasma, whereas N-(4-fluorobenzoyl)glycine (YM-385461) was detected in plasma, but not in urine. The renal and hepatic uptake transporters for these metabolites were investigated by assessing their inhibitory effect on uptake activity in human (h) organic cation transporter (OCT) 1–3/rat (r) Oct1–3, human organic anion transporter (OAT) 1/rOat1, hOAT3/rOat3, and organic anion-transporting protein 1B1/1B3-expressing HEK293 cells. IC50 values of YM-252124 for 1-methyl-4-phenylpyridinium uptake via hOCT2 and rOct2 were 93.9 and 1700 μM, respectively, suggesting that this metabolite is secreted into urine via hOCT2/rOct2 and that the large difference in the inhibitory potentials between hOCT2 and rOct2 explains the species difference in the urinary excretion ratio of the radioactivity. The renal secretion of YM-385461, one derivative of p-aminohippuric acid, via hOAT1/rOat1, and hepatic uptake of YM-252124 via hOCT1/rOct1 was also expected. This kind of study was useful in investigating the relationship between the urinary/hepatic elimination and the transport activity for metabolites.1 Title page Identification of human metabolites of YM758, a novel If channel inhibitor, and investigation of the transporter-mediated renal and hepatic excretion of these metabolites Ken-ichi Umehara, Nobuaki Shirai, Takafumi Iwatsubo, Kiyoshi Noguchi, Takashi Usui, and Hidetaka Kamimura Drug Metabolism Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 1-8, Azusawa 1-chome, Itabashi-ku, Tokyo 174-8511, Japan (K.U., T.I., K.N., T.U., H.K.); Tsukuba Laboratories, Nemoto Science Co., Ltd., 6136-4, Ohnogo-machi, Joso-shi, Ibaraki 300-2521, Japan (N.S.) DMD Fast Forward. Published on May 13, 2009 as doi:10.1124/dmd.108.026294


Journal of International Medical Research | 2008

Functional Involvement of the Organic Cation Transporter 2 (rOct2) in the Renal Uptake of Organic Cations in Rats

K.-I. Umehara; Takafumi Iwatsubo; Kiyoshi Noguchi; Hidetaka Kamimura

This study examined the contribution made by organic cation transporters (hOCT/rOct) to the saturable component of the renal uptake of 1-methyl-4-phenylpyridinium, tetraethylammonium (TEA), cimetidine and metformin into rOct2-expressing HEK293 cells and rat kidney slices. All the test compounds accumulated in the rat kidney slices in a carrier-mediated manner. The Michaelis–Menten constant (Km ) values for saturable uptake of TEA, cimetidine and metformin into rat kidney slices were relatively comparable with those for the rOct2-expressing HEK293 cells. In addition, the relative uptake activity values of TEA, cimetidine and metformin in rat kidney slices were similar to those in rOct2-expressing HEK293 cells. This suggests that the saturable components involved in the renal uptake of TEA, cimetidine and metformin are mediated mainly by rOct2. The saturable uptake profile of cationic compounds into rat kidney can be evaluated in both cDNA-expressing cells and rat kidney slices, as well as the transporter expression pattern. This approach can also be used to estimate the saturable uptake mechanism of cationic compounds into the human kidney when human kidney slices and hOCT2-expressing cells are used.

Collaboration


Dive into the Kiyoshi Noguchi's collaboration.

Top Co-Authors

Avatar

Hidetaka Kamimura

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidetaka Kamimura

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge