Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyotaka Shiba is active.

Publication


Featured researches published by Kiyotaka Shiba.


Journal of Virology | 2001

Incorporation of Lysyl-tRNA Synthetase into Human Immunodeficiency Virus Type 1

Ahmad Khorchid; Hassan Javanbakht; Juliana Gabor; Kiyotaka Shiba; Karin Musier-Forsyth; Lawrence Kleiman

ABSTRACT During human immunodeficiency virus type 1 (HIV-1) assembly, tRNALys isoacceptors are selectively incorporated into virions and tRNA 3 Lys is used as the primer for reverse transcription. We show herein that the tRNALys-binding protein, lysyl-tRNA synthetase (LysRS), is also selectively packaged into HIV-1. The viral precursor protein Pr55 gag alone will package LysRS into Pr55 gag particles, independently of tRNALys. With the additional presence of the viral precursor protein Pr160 gag-pol , tRNALys and LysRS are both packaged into the particle. While the predominant cytoplasmic LysRS has an apparent M r of 70,000, viral LysRS associated with tRNALys packaging is shorter, with an apparent M r of 63,000. The truncation occurs independently of viral protease and might be required to facilitate interactions involved in the selective packaging and genomic placement of primer tRNA 3 Lys .


Proceedings of the National Academy of Sciences of the United States of America | 2008

Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins

Toru Tsuji; Kazuo Onuma; Akira Yamamoto; Mayumi Iijima; Kiyotaka Shiba

An animals hard tissue is mainly composed of crystalline calcium phosphate. In vitro, small changes in the reaction conditions affect the species of calcium phosphate formed, whereas, in vivo, distinct types of crystalline calcium phosphate are formed in a well-controlled spatiotemporal-dependent manner. A variety of proteins are involved in hard-tissue formation; however, the mechanisms by which they regulate crystal growth are not yet fully understood. Clarification of these mechanisms will not only lead to the development of new therapeutic regimens but will also provide guidance for the application of biomineralization in bionanotechnology. Here, we focused on the peptide motifs present in dentin matrix protein 1 (DMP1), which was previously shown to enhance hydroxylapatite (HAP) formation when immobilized on a glass substrate. We synthesized a set of artificial proteins composed of combinatorial arrangements of these motifs and successfully obtained clones that accelerated formation of HAP without immobilization. Time-resolved static light-scattering analyses revealed that, in the presence of the protein, amorphous calcium phosphate (ACP) particles increased their fractal dimension and molecular mass without increasing their gyration radii during a short period before precipitation. The protein thus facilitated reorganization of the internal structure of amorphous particles into ordered crystalline states, i.e., the direct transformation of ACP to HAP, thereby acting as a nucleus for precipitation of crystalline calcium phosphate. Without the protein, the fractal dimension, molecular mass, and gyration radii of ACP particles increased concurrently, indicating heterogeneous growth transformation.


Biomaterials | 2009

Directional BMP-2 for functionalization of titanium surfaces.

Kenji Kashiwagi; Toru Tsuji; Kiyotaka Shiba

Efficient immobilization of biomacromolecules on material surfaces is a key to development in areas of regenerative medicine and tissue engineering. However, strong and irreversible immobilization of cytokines on surfaces often diminishes their biological functionality. A destructive hydrophobic interaction between the material surface and the biomolecule may underlie this inactivation. Alternatively, dissociation of the cytokine from the material may be necessary for signal transduction. Here we propose a new method for immobilizing cytokines on material surfaces: a material-binding artificial peptide is used to mediate reversible interaction between the cytokine and the material surface. We created artificial proteins that contained three copies of a Ti-binding motif, and fused them to the N-terminal of BMP-2. The engineered BMP-2 showed reversible binding to Ti surfaces and induced BMP signaling activity. When a hydrophobic protein devoid of the Ti-binding motif was fused to BMP-2, the protein tightly bound to Ti surfaces but showed little BMP activity, confirming the importance of the mode of immobilization.


Journal of Virology | 2002

Retrovirus-Specific Packaging of Aminoacyl-tRNA Synthetases with Cognate Primer tRNAs

Hassan Javanbakht; Sung-Hoon Kim; Kiyotaka Shiba; Rebecca C. Craven; Alan Rein; Karla L. Ewalt; Paul Schimmel; Karin Musier-Forsyth; Lawrence Kleiman

ABSTRACT The tRNAs used to prime reverse transcription in human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus (RSV), and Moloney murine leukemia virus (Mo-MuLV) are \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} , tRNATrp, and tRNAPro, respectively. Using antibodies to the three cognate human aminoacyl-tRNA synthetases, we found that only lysyl-tRNA synthetase (LysRS) is present in HIV-1, only tryptophanyl-tRNA synthetase (TrpRS) is present in RSV, and neither these two synthetases nor prolyl-tRNA synthetase (ProRS) is present in Mo-MuLV. LysRS and TrpRS are present in HIV-1 and RSV at approximately 25 and 12 molecules/virion, respectively. These results support the hypothesis that, in HIV-1 and RSV, the cognate aminoacyl-tRNA synthetase may be used as the signal for targeting the selective packaging of primer tRNAs into retroviruses. The absence of ProRS in Mo-MuLV is consistent with reports that selective packaging of tRNAPro in this virus is less important for achieving optimum annealing of the primer to Mo-MuLV genomic RNA.


Biofouling | 2010

Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides

Masao Yoshinari; Tetsuo Kato; Kenichi Matsuzaka; Tohru Hayakawa; Kiyotaka Shiba

Specific binding of antimicrobial peptides to titanium (Ti) surfaces may serve to prevent biofilm formation, leading to a reduction in peri-implantitis. This study evaluated the binding behavior of conjugated molecules consisting of antimicrobial and hexapeptidic Ti-binding peptides (minTBP-1) using the quartz crystal microbalance (QCM-D) technique, and investigated the effect of modification of Ti surfaces with these peptides on the bioactivity of Porphyromonas gingivalis. Four kinds of peptide were prepared: histatin 5 (DSHAKRHHGYKRKFHEKHHSHRGY), minTBP-1 + histatin 5 (RKLPDAPDSHAKRHHGYKRKFHEKHHSHRGY), lactoferricin (FQWQRNMRKVR), and minTBP-1 + lactoferricin (RKLPDAPGGFQWQRNMRKVR). The QCM-D analysis demonstrated that significantly larger increases in peptide adsorption were observed in the conjugated peptides than in antimicrobial peptides alone. In addition, ATP activity in P. gingivalis in peptide-modified specimens significantly decreased compared to that in the Ti control. These results indicate that surface modification with conjugated molecules consisting of antimicrobial and Ti-binding peptides is a promising method for reduction of biofilm formation on Ti surfaces.


ACS Nano | 2009

Biodistribution and Ultrastructural Localization of Single-Walled Carbon Nanohorns Determined In Vivo with Embedded Gd2O3 Labels

Jin Miyawaki; Sachiko Matsumura; Ryota Yuge; Tatsuya Murakami; Shigeo Sato; Akihiro Tomida; Takashi Tsuruo; Toshinari Ichihashi; Takako Fujinami; Hiroshi Irie; Kunihiro Tsuchida; Sumio Iijima; Kiyotaka Shiba; Masako Yudasaka

Single-walled carbon nanohorns (SWNHs) are single-graphene tubules that have shown high potential for drug delivery systems. In drug delivery, it is essential to quantitatively determine biodistribution and ultrastructural localization. However, to date, these determinations have not been successfully achieved. In this report, we describe for the first time a method that can achieve these determinations. We embedded Gd(2)O(3) nanoparticles within SWNH aggregates (Gd(2)O(3)@SWNHag) to facilitate detection and quantification. Gd(2)O(3)@SWNHag was intravenously injected into mice, and the quantities of Gd in the internal organs were measured by inductively coupled plasma atomic emission spectroscopy: 70-80% of the total injected material accumulated in liver. The high electron scattering ability of Gd allows detection with energy dispersive X-ray spectroscopy and facilitates the ultrastructural localization of individual Gd(2)O(3)@SWNHag with transmission electron microscopy. In the liver, we found that the Gd(2)O(3)@SWNHag was localized in Kupffer cells but were not observed in hepatocytes. In the Kupffer cells, most of the Gd(2)O(3)@SWNHag was detected inside phagosomes, but some were in another cytoplasmic compartment that was most likely the phagolysosome.


Journal of Virology | 2004

Cellular Distribution of Lysyl-tRNA Synthetase and Its Interaction with Gag during Human Immunodeficiency Virus Type 1 Assembly

Rabih Halwani; Hassan Javanbakht; Jenan Saadatmand; Sung-Hoon Kim; Kiyotaka Shiba; Lawrence Kleiman

ABSTRACT Lysyl-tRNA synthetase (LysRS) is packaged into human immunodeficiency virus type 1 (HIV-1) via its interaction with Gag, and this enzyme facilitates the selective packaging of tRNA3Lys, the primer for initiating reverse transcription, into HIV-1. The Gag/LysRS interaction is detected at detergent-resistant membrane but not in membrane-free cell compartments that contain Gag and LysRS. LysRS is found (i) in the nucleus, (ii) in a cytoplasmic high-molecular-weight aminoacyl-tRNA synthetase complex (HMW aaRS complex), (iii) in mitochondria, and (iv) associated with plasma membrane. The cytoplasmic form of LysRS lacking the mitochondrial import signal was previously shown to be efficiently packaged into virions, and in this report we also show that LysRS compartments in nuclei, in the HMW aaRS complex, and at the membrane are also not required as a primary source for viral LysRS. Exogenous mutant LysRS species unable to either enter the nucleus or bind to the cell membrane are still incorporated into virions. Many HMW aaRS components are not packaged into the virion along with LysRS, and the interaction of LysRS with p38, a protein that binds tightly to LysRS in the HMW aaRS complex, is not required for the incorporation of LysRS into virions. These data indicate that newly synthesized LysRS may interact rapidly with Gag before the enzyme has the opportunity to move to the above-mentioned cellular compartments. In confirmation of this idea, we found that newly synthesized LysRS is associated with Gag after a 10-min pulse with [35S]cysteine/methionine. This observation is also supported by previous work indicating that the incorporation of LysRS into HIV-1 is very sensitive to the inhibition of new synthesis of LysRS.


Journal of Biological Chemistry | 1997

Human Lysyl-tRNA Synthetase Accepts Nucleotide 73 Variants and Rescues Escherichia coli Double-defective Mutant

Kiyotaka Shiba; Hiromi Motegi; Tetsuo Noda; Karin Musier-Forsyth; Paul Schimmel

The nucleotide 73 (N73) “discriminator” base in the acceptor stem is a key element for efficient and specific aminoacylation of tRNAs and of microhelix substrates derived from tRNA acceptor stems. This nucleotide was possibly one of the first to be used for differentiating among groups of early RNA substrates by tRNA synthetases. In contrast to many other synthetases, we report here that the class II human lysyl-tRNA synthetase is relatively insensitive to the nature of N73. We cloned, sequenced, and expressed the enzyme, which is a close homologue of the class II yeast aspartyl-tRNA synthetase whose co-crystal structure (with tRNAAsp) is known. The latter enzyme has a strong requirement for G73, which interacts with 4 of the 14 residues within the “motif 2” loop of the enzyme. Even though eukaryotic lysine tRNAs also encode G73, the motif 2 loop sequence of lysyl-tRNA synthetase differs at multiple positions from that of the aspartate enzyme. Indeed, the recombinant human lysine enzyme shows little preference for G, and even charges human tRNA transcripts encoding the A73 found in E. coli lysine tRNAs. Moreover, while the lysine enzyme is the only one in E. coli to be encoded by two separate genes, a double mutant that disables both genes is complemented by a cDNA expressing the human protein. Thus, the sequence of the loop of motif 2 of human lysyl-tRNA synthetase specifies a structural variation that accommodates nucleotide degeneracy at position 73. This sequence might be used as a starting point for obtaining highly specific interactions with any given N73 by simple amino acid replacements.


Current Opinion in Biotechnology | 2010

Exploitation of peptide motif sequences and their use in nanobiotechnology

Kiyotaka Shiba

Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field.


Trends in Biochemical Sciences | 1997

Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains

Kiyotaka Shiba; Hiromi Motegi; Paul Schmimmel

The universal genetic code is determined by the aminoacylation of tRNAs. In spite of the universality of the code, there are barriers to aminoacylation across taxonomic domains. These barriers are thought to correlate with the co-segregation of sequences of synthetases and tRNAs into distinct taxonomic domains. By contrast, we show here examples of eukaryote-like synthetases that are found in certain prokaryotes. The associated tRNAs have retained their prokaryote-like character in each instance. Thus, co-segregation of domain-specific synthetases and tRNAs does not always occur. Instead, synthetases make adaptations of tRNA-protein contacts to cross taxonomic domains.

Collaboration


Dive into the Kiyotaka Shiba's collaboration.

Top Co-Authors

Avatar

Ichiro Yamashita

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ken-Ichi Sano

International Institute of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Tamiko Minamisawa

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kenji Kashiwagi

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sachiko Matsumura

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuo Noda

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Masako Yudasaka

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukiharu Uraoka

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge