Kjerstin Lanke
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kjerstin Lanke.
BMJ | 2010
Frank J. M. van Kuppeveld; Arjan S. de Jong; Kjerstin Lanke; Gerald W. Verhaegh; Willem J. G. Melchers; C.M.A. Swanink; Gijs Bleijenberg; Mihai G. Netea; Jochem M. D. Galama; Jos W. M. van der Meer
Objective The presence of the retrovirus xenotropic murine leukaemia virus-related virus (XMRV) has been reported in peripheral blood mononuclear cells of patients with chronic fatigue syndrome. Considering the potentially great medical and social relevance of such a discovery, we investigated whether this finding could be confirmed in an independent European cohort of patients with chronic fatigue syndrome. Design Analysis of a well defined cohort of patients and matched neighbourhood controls by polymerase chain reaction. Setting Certified (ISO 15189) laboratory of clinical virology in a university hospital in the Netherlands. Population Between December 1991 and April 1992, peripheral blood mononuclear cells were isolated from 76 patients and 69 matched neighbourhood controls. In this study we tested cells from 32 patients and 43 controls from whom original cryopreserved phials were still available. Main outcome measures Detection of XMRV in peripheral blood mononuclear cells by real time polymerase chain reaction assay targeting the XMRV integrase gene and/or a nested polymerase chain reaction assay targeting the XMRV gag gene. Results We detected no XMRV sequences in any of the patients or controls in either of the assays, in which relevant positive and negative isolation controls and polymerase chain reaction controls were included. Spiking experiments showed that we were able to detect at least 10 copies of XMRV sequences per 105 peripheral blood mononuclear cells by real time as well as by nested polymerase chain reaction, demonstrating high sensitivity of both assays. Conclusions This study failed to show the presence of XMRV in peripheral blood mononuclear cells of patients with chronic fatigue syndrome from a Dutch cohort. These data cast doubt on the claim that XMRV is associated with chronic fatigue syndrome in the majority of patients.
PLOS Pathogens | 2009
Jan Zoll; Sandra Erkens Hulshof; Kjerstin Lanke; Frans M. Verduyn Lunel; Willem J. G. Melchers; Esther Schoondermark-van de Ven; Merja Roivainen; Jochem M. D. Galama; Frank J. M. van Kuppeveld
The family Picornaviridae contains well-known human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and parechovirus). In addition, this family contains a number of viruses that infect animals, including members of the genus Cardiovirus such as Encephalomyocarditis virus (EMCV) and Theilers murine encephalomyelits virus (TMEV). The latter are important murine pathogens that cause myocarditis, type 1 diabetes and chronic inflammation in the brains, mimicking multiple sclerosis. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV). The virus is genetically related to Theilers virus and classified as a new species in the genus Cardiovirus, which until the discovery of SAFV did not contain human viruses. By analogy with the rodent cardioviruses, SAFV may be a relevant new human pathogen. Thus far, SAFVs have sporadically been detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance remained unclear. Here we describe the first cultivated SAFV type 3 (SAFV-3) isolate, its growth characteristics, full-length sequence, and epidemiology. Unlike the previously isolated SAFV-1 and -2 viruses, SAFV-3 showed efficient growth in several cell lines with a clear cytopathic effect. The latter allowed us to conduct a large-scale serological survey by a virus-neutralization assay. This survey showed that infection by SAFV-3 occurs early in life (>75% positive at 24 months) and that the seroprevalence reaches >90% in older children and adults. Neutralizing antibodies were found in serum samples collected in several countries in Europe, Africa, and Asia. In conclusion, this study describes the first cultivated SAFV-3 isolate, its full-length sequence, and epidemiology. SAFV-3 is a highly common and widespread human virus causing infection in early childhood. This finding has important implications for understanding the impact of these ubiquitous viruses and their possible role in acute and/or chronic disease.
Journal of Virology | 2009
Kjerstin Lanke; Hilde M. van der Schaar; George A. Belov; Qian Feng; Daniël Duijsings; Catherine L. Jackson; Ellie Ehrenfeld; Frank J. M. van Kuppeveld
ABSTRACT The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study.
Journal of Virology | 2006
Els Wessels; Daniël Duijsings; Kjerstin Lanke; Sander H. J. van Dooren; Catherine L. Jackson; Willem J. G. Melchers; Frank J. M. van Kuppeveld
ABSTRACT The 3A protein of the coxsackievirus B3 (CVB3), an enterovirus that belongs to the family of the picornaviruses, inhibits endoplasmic reticulum-to-Golgi transport. Recently, we elucidated the underlying mechanism by showing that CVB3 3A interferes with ADP-ribosylation factor 1 (Arf1)-dependent COP-I recruitment to membranes by binding and inhibiting the function of GBF1, a guanine nucleotide exchange factor that is required for the activation of Arf1 (E. Wessels et al., Dev. Cell 11:191-201, 2006). Here, we show that the 3A protein of poliovirus, another enterovirus, is also able to interfere with COP-I recruitment through the same mechanism. No interference with protein transport or COP-I recruitment was observed for the 3A proteins of any of the other picornaviruses tested here (human rhinovirus [HRV], encephalomyocarditis virus, foot-and-mouth disease virus, and hepatitis A virus). We show that the 3A proteins of HRV, which are the most closely related to the enteroviruses, are unable to inhibit COP-I recruitment, due to a reduced ability to bind GBF1. When the N-terminal residues of the HRV 3A proteins are replaced by those of CVB3 3A, chimeric proteins are produced that have gained the ability to bind GBF1 and, by consequence, to inhibit protein transport. These results show that the N terminus of the CVB3 3A protein is important for binding of GBF1 and its transport-inhibiting function. Taken together, our data demonstrate that the activity of the enterovirus 3A protein to inhibit GBF1-dependent COP-I recruitment is unique among the picornaviruses.
Lancet Infectious Diseases | 2014
Alice C Eziefula; Teun Bousema; Shunmay Yeung; Moses R. Kamya; Asiphas Owaraganise; Grace Gabagaya; John S. Bradley; Lynn Grignard; Kjerstin Lanke; Humphrey Wanzira; Arthur Mpimbaza; Samuel L. Nsobya; Nicholas J. White; Emily L. Webb; Sarah G. Staedke; Chris Drakeley
BACKGROUND Primaquine is the only available drug that clears mature Plasmodium falciparum gametocytes in infected human hosts, thereby preventing transmission of malaria to mosquitoes. However, concerns about dose-dependent haemolysis in people with glucose-6-phosphate dehydrogenase (G6PD) deficiencies have limited its use. We assessed the dose-response association of single-dose primaquine for gametocyte clearance and for safety in P falciparum malaria. METHODS We undertook this randomised, double-blind, placebo-controlled trial with four parallel groups in Jinja district, eastern Uganda. We randomly allocated Ugandan children aged 1-10 years with uncomplicated falciparum malaria and normal G6PD enzyme function to receive artemether-lumefantrine, combined with either placebo or with 0.1 mg/kg, 0.4 mg/kg, or 0.75 mg/kg (WHO reference dose) primaquine base. Randomisation was done with computer-generated four-digit treatment assignment codes allocated to random dose groups in block sizes of 16. Study staff who provided care or assessed outcomes and the participants remained masked to the intervention group after assignment. The primary efficacy endpoint was the non-inferiority of the mean duration of gametocyte carriage in the test doses compared with the reference group of 0.75 mg primaquine per kg, with a non-inferiority margin of 2.5 days. The primary safety endpoint was the superiority of the arithmetic mean maximum decrease in haemoglobin concentration from enrolment to day 28 of follow-up in the primaquine treatment groups compared with placebo, with use of significance testing of pairwise comparisons with a cutoff of p=0.05. The trial is registered with ClinicalTrials.gov, number NCT01365598. FINDINGS We randomly allocated 468 participants to receive artemether-lumefantrine combined with placebo (119 children) or with 0.1 mg/kg (116), 0.4 mg/kg (116), or 0.75 mg/kg (117) primaquine base. The mean duration of gametocyte carriage was 6.6 days (95% CI 5.3-7.8) in the 0.75 mg/kg reference group, 6.3 days (5.1-7.5) in the 0.4 mg/kg primaquine group (p=0.74), 8.0 days (6.6-9.4) in the 0.1 mg/kg primaquine group (p=0.14), and 12.4 days (9.9-15.0) in the placebo group (p<0.0001). No children showed evidence of treatment-related haemolysis, and the mean maximum decrease in haemoglobin concentration was not associated with the dose of primaquine received-it did not differ significantly compared with placebo (10.7 g/L, SD 11.1) in the 0.1 mg/kg (11.4 g/L, 9.4; p=0.61), 0.4 mg/kg (11.3 g/L, 10.0; p=0.67), or 0.75 mg/kg (12.7 g/L, 8.2; p=0.11) primaquine groups. INTERPRETATION We conclude that 0.4 mg/kg primaquine has similar gametocytocidal efficacy to the reference 0.75 mg/kg primaquine dose, but a dose of 0.1 mg/kg was inconclusive for non-inferiority. Our findings call for the prioritisation of further trials into the efficacy and safety of doses of primaquine between 0.1 mg/kg and 0.4 mg/kg (including the dose of 0.25 mg/kg recently recommended by WHO), in view of the potential for widespread use of the drug to block malaria transmission. FUNDING Wellcome Trust and the Bill & Melinda Gates Foundation.
Cell Research | 2012
Hilde M. van der Schaar; Lonneke van der Linden; Kjerstin Lanke; Jeroen R.P.M. Strating; Gerhard Pürstinger; Erik de Vries; Cornelis A. M. de Haan; Johan Neyts; Frank J. M. van Kuppeveld
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.
Journal of Virology | 2008
Arjan S. de Jong; Fabrizio de Mattia; Michiel M. T. van Dommelen; Kjerstin Lanke; Willem J. G. Melchers; Peter H. G. M. Willems; Frank J. M. van Kuppeveld
ABSTRACT The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different genera. The enterovirus 2B protein is a small hydrophobic protein that, upon individual expression, is localized to the endoplasmic reticulum (ER) and the Golgi complex, reduces ER and Golgi complex Ca2+ levels, most likely by forming transmembrane pores, and inhibits protein trafficking through the Golgi complex. At present, little is known about the function of the other picornavirus 2B proteins. Here we show that rhinovirus 2B, which is phylogenetically closely related to enterovirus 2B, shows a similar subcellular localization and function to those of enterovirus 2B. In contrast, 2B proteins of hepatitis A virus, foot-and-mouth disease virus, and encephalomyocarditis virus, all of which are more distantly related to enteroviruses, show a different localization and have little, if any, effects on Ca2+ homeostasis and intracellular protein trafficking. Our data suggest that the 2B proteins of enterovirus and rhinovirus share the same function in virus replication, while the other picornavirus 2B proteins support the viral life cycle in a different manner. Moreover, we show that an enterovirus 2B protein that is retained in the ER is unable to modify Ca2+ homeostasis and inhibit protein trafficking, demonstrating the importance of Golgi complex localization for its functioning.
Cellular Microbiology | 2007
Stanleyson V. Hato; Céline Ricour; Barbara M. Schulte; Kjerstin Lanke; Mike de Bruijni; Jan Zoll; Willem J. G. Melchers; Thomas Michiels; Frank J. M. van Kuppeveld
Viral infection of mammalian cells triggers the synthesis and secretion of type I interferons (i.e. IFN‐α/β), which induce the transcription of genes that cause cells to adopt an antiviral state. Many viruses have adapted mechanisms to evade IFN‐α/β‐mediated responses. The leader protein of mengovirus, a picornavirus, has been implicated as an IFN‐α/β antagonist. Here, we show that the leader inhibits the transcription of IFN‐α/β and that both the presence of a zinc finger motif in its N‐terminus and phosphorylation of threonine‐47 are required for this function. Transcription of IFN‐α/β genes relies on the activity of a number of transcription factors, including interferon regulatory factor 3 (IRF‐3). We show that the leader interferes with the transactivation activity of IRF‐3 by interfering with its dimerization. Accordingly, mutant viruses with a disturbed leader function were impaired in their ability to suppress IFN‐α/β transcription in vivo. By consequence, the leader mutant viruses had an impaired ability to replicate and spread in normal mice but not in IFNAR‐KO mice, which are incapable of mounting an IFN‐α/β‐dependent antiviral response. These results suggest that the leader, by suppressing IRF3‐mediated IFN‐α/β production, plays an important role in replication and dissemination of mengovirus in its host.
Journal of Virology | 2014
Qian Feng; Martijn A. Langereis; Marie Lork; Mai Nguyen; Stanleyson V. Hato; Kjerstin Lanke; Luni Emdad; Praveen Bhoopathi; Paul B. Fisher; Richard E. Lloyd; Frank J. M. van Kuppeveld
ABSTRACT RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3Cpro, whereas MAVS cleavage by enterovirus 71 has been attributed to 2Apro. As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2Apro, while RIG-I is cleaved by 3Cpro. Moreover, we show that proteinases 2Apro and 3Cpro of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2Apro by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2Apro) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.
Antimicrobial Agents and Chemotherapy | 2013
Hilde M. van der Schaar; Pieter Leyssen; Hendrik Jan Thibaut; Armando M. De Palma; Lonneke van der Linden; Kjerstin Lanke; Céline Lacroix; Erik Verbeken; Katja Conrath; Angus Macleod; Dale R. Mitchell; Nicholas J. Palmer; Hervé Van de Poël; Martin James Inglis Andrews; Johan Neyts; Frank J. M. van Kuppeveld
ABSTRACT Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model.