Klaartje van Engelen
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaartje van Engelen.
Circulation-cardiovascular Genetics | 2011
Alex V. Postma; Klaartje van Engelen; Judith van de Meerakker; Thahira Rahman; Susanne Probst; Marieke J.H. Baars; Ulrike Bauer; Thomas Pickardt; Silke Sperling; Felix Berger; Antoon F. M. Moorman; B. J. M. Mulder; Ludwig Thierfelder; Bernard Keavney; Judith A. Goodship; Sabine Klaassen
Background—Ebstein anomaly is a rare congenital heart malformation characterized by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. An association between Ebstein anomaly with left ventricular noncompaction (LVNC) and mutations in MYH7 encoding &bgr;-myosin heavy chain has been shown; in this report, we have screened for MYH7 mutations in a cohort of probands with Ebstein anomaly in a large population-based study. Methods and Results—Mutational analysis in a cohort of 141 unrelated probands with Ebstein anomaly was performed by next-generation sequencing and direct DNA sequencing of MYH7. Heterozygous mutations were identified in 8 of 141 samples (6%). Seven distinct mutations were found; 5 were novel and 2 were known to cause hypertrophic cardiomyopathy. All mutations except for 1 3-bp deletion were missense mutations; 1 was a de novo change. Mutation-positive probands and family members showed various congenital heart malformations as well as LVNC. Among 8 mutation-positive probands, 6 had LVNC, whereas among 133 mutation-negative probands, none had LVNC. The frequency of MYH7 mutations was significantly different between probands with and without LVNC accompanying Ebstein anomaly (P<0.0001). LVNC segregated with the MYH7 mutation in the pedigrees of 3 of the probands, 1 of which also included another individual with Ebstein anomaly. Conclusions—Ebstein anomaly is a congenital heart malformation that is associated with mutations in MYH7. MYH7 mutations are predominantly found in Ebstein anomaly associated with LVNC and may warrant genetic testing and family evaluation in this subset of patients.
Nature Genetics | 2013
Heather J. Cordell; Jamie Bentham; Ana Töpf; Diana Zelenika; Simon Heath; Chrysovalanto Mamasoula; Catherine Cosgrove; Gillian M. Blue; Javier Granados-Riveron; Kerry Setchfield; Chris Thornborough; Jeroen Breckpot; Rachel Soemedi; Ruairidh Martin; Thahira Rahman; Darroch Hall; Klaartje van Engelen; Antoon F. M. Moorman; Aelko H. Zwinderman; Phil Barnett; Tamara T. Koopmann; Michiel E. Adriaens; András Varró; Alfred L. George; Christobal Dos Remedios; Nanette H. Bishopric; Connie R. Bezzina; John O'Sullivan; Marc Gewillig; Frances Bu'Lock
We carried out a genome-wide association study (GWAS) of congenital heart disease (CHD). Our discovery cohort comprised 1,995 CHD cases and 5,159 controls and included affected individuals from each of the 3 major clinical CHD categories (with septal, obstructive and cyanotic defects). When all CHD phenotypes were considered together, no region achieved genome-wide significant association. However, a region on chromosome 4p16, adjacent to the MSX1 and STX18 genes, was associated (P = 9.5 × 10−7) with the risk of ostium secundum atrial septal defect (ASD) in the discovery cohort (N = 340 cases), and this association was replicated in a further 417 ASD cases and 2,520 controls (replication P = 5.0 × 10−5; odds ratio (OR) in replication cohort = 1.40, 95% confidence interval (CI) = 1.19–1.65; combined P = 2.6 × 10−10). Genotype accounted for ∼9% of the population-attributable risk of ASD.
Mitochondrion | 2010
Mike Gerards; Bianca van den Bosch; Chantal Calis; Kees Schoonderwoerd; Klaartje van Engelen; Marina A. J. Tijssen; René de Coo; Anneke J. van der Kooi; H.J.M. Smeets
Hereditary ataxias are genetic disorders characterized by uncoordinated gait and often poor coordination of hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. Many ataxias are autosomal dominant, but autosomal recessive (AR) disease occurs as well. Homozygosity mapping in a consanguineous family with three affected children with progressive cerebellar ataxia and atrophy revealed a candidate locus on chromosome 1, containing the CABC1/ADCK3 (the chaperone, ABC1 activity of bc1 complex homologue) gene. CABC1/ADCK3 is the homologue of the yeast Coq8 gene, which is involved in the ubiquinone biosynthesis pathway. Mutation analysis of this gene showed a homozygous nonsense mutation (c.1042C>T, p.R348X). Eight additional patients with AR cerebellar ataxia and atrophy were screened for mutations in the CABC1/ADCK3 gene. One patient was compound heterozygous for the same c.1042C>T mutation and a second nonsense mutation (c.1136T>A, p.L379X). Both mutations created a premature stop codon, triggering nonsense mediated mRNA decay as the pathogenic mechanism. We found no evidence of a Dutch founder for the c.1042C>T mutation in AR ataxia. We report here the first nonsense mutations in CABC1 that most likely lead to complete absence of a functional CABC1 protein. Our results indicate that CABC1 is an important candidate for mutation analysis in progressive cerebellar ataxia and atrophy on MRI to identify those patients, who may benefit from CoQ10 treatment.
Human Molecular Genetics | 2013
Heather J. Cordell; Ana Töpf; Chrysovalanto Mamasoula; Alex V. Postma; Jamie Bentham; Diana Zelenika; Simon Heath; Gillian M. Blue; Catherine Cosgrove; Javier Granados Riveron; Rebecca Darlay; Rachel Soemedi; Ian Wilson; Kristin L. Ayers; Thahira Rahman; Darroch Hall; Barbara J.M. Mulder; Aelko H. Zwinderman; Klaartje van Engelen; J. David Brook; Kerry Setchfield; Frances Bu'Lock; Chris Thornborough; John O'Sullivan; A. Graham Stuart; Jonathan M. Parsons; Shoumo Bhattacharya; David S. Winlaw; Seema Mital; Marc Gewillig
We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TOF.
American Journal of Human Genetics | 2010
Bernard Thienpont; Litu Zhang; Alex V. Postma; Jeroen Breckpot; Léon-Charles Tranchevent; Peter Van Loo; Kjeld Møllgård; Niels Tommerup; Iben Bache; Zeynep Tümer; Klaartje van Engelen; Björn Menten; Geert Mortier; Darrel Waggoner; Marc Gewillig; Yves Moreau; Koen Devriendt; Lars Allan Larsen
Congenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion on 6q delineated a critical 850 kb region on 6q25.1 harboring five genes. Bioinformatics prioritization of candidate genes in this locus for a role in CHDs identified the TGF-beta-activated kinase 1/MAP3K7 binding protein 2 gene (TAB2) as the top-ranking candidate gene. A role for this candidate gene in cardiac development was further supported by its conserved expression in the developing human and zebrafish heart. Moreover, a critical, dosage-sensitive role during development was demonstrated by the cardiac defects observed upon titrated knockdown of tab2 expression in zebrafish embryos. To definitively confirm the role of this candidate gene in CHDs, we performed mutation analysis of TAB2 in 402 patients with a CHD, which revealed two evolutionarily conserved missense mutations. Finally, a balanced translocation was identified, cosegregating with familial CHD. Mapping of the breakpoints demonstrated that this translocation disrupts TAB2. Taken together, these data clearly demonstrate a role for TAB2 in human cardiac development.
Heart | 2010
Klaartje van Engelen; Ana Töpf; Bernard Keavney; Judith A. Goodship; Enno T. van der Velde; Marieke J.H. Baars; Simone Snijder; Antoon F. M. Moorman; Alex V. Postma; Barbara J.M. Mulder
Background Three quarters of patients with 22q11.2 Deletion Syndrome (22q11.2DS) have congenital heart disease (CHD), typically conotruncal heart defects. Although it is currently common practice to test all children with typical CHD for 22q11.2DS, many adult patients have not been tested in the past and therefore 22q11.2DS might be under-recognised in adults. Objectives To determine the prevalence of 22q11.2DS in adults with tetralogy of Fallot (TOF) and pulmonary atresia (PA)/ventricular septal defect (VSD) and to assess the level of recognition of the syndrome in adult patients. Methods Patients were identified from CONCOR, a nationwide registry for adult patients with CHD. Inclusion criteria were diagnosis of TOF or PA/VSD and the availability of DNA. Patients with syndromes other than 22q11.2DS were excluded. Multiplex ligation-dependent probe amplification was used to detect 22q11.2 microdeletions. Results 479 patients with TOF and 79 patients with PA/VSD (56% male, median age 34.7 years) were included and analysed. Twenty patients were already known to have 22q11.2DS. A 22q11.2 microdeletion was detected in a further 24 patients. Thirty-one patients with TOF (6.5%) had 22q11.2DS, whereas 13 patients with PA/VSD had 22q11.2DS (16.5%). Of all 22q11.2 microdeletions, 54% (24/44) were unknown before this study. Conclusion This study shows that although the prevalence of 22q11.2DS in adults with TOF and PA/VSD is substantial, it is unrecognised in more than half of patients. As the syndrome has important clinical and reproductive implications, a diagnostic test should be considered in all adult patients with TOF and PA/VSD.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2013
Alexa M.C. Vermeer; Klaartje van Engelen; Alex V. Postma; Marieke J.H. Baars; Imke Christiaans; Simone de Haij; Sabine Klaassen; Barbara J.M. Mulder; Bernard Keavney
Left ventricular noncompaction (LVNC) is a relatively common genetic cardiomyopathy, characterized by prominent trabeculations with deep intertrabecular recesses in mainly the left ventricle. Although LVNC often occurs in an isolated entity, it may also be present in various types of congenital heart disease (CHD). The most prevalent CHD in LVNC is Ebstein anomaly, which is a rare form of CHD characterized by apical displacement and partial fusion of the septal and posterior leaflet of the tricuspid valve with the ventricular septum. Several reports of sporadic as well as familial cases of Ebstein anomaly associated with LVNC have been reported. Recent studies identified mutations in the MYH7 gene, encoding the sarcomeric β‐myosin heavy chain protein, in patients harboring this specific phenotype. Here, we will review the association between Ebstein anomaly, LVNC and mutations in MYH7, which seems to represent a subtype of Ebstein anomaly with autosomal dominant inheritance and variable penetrance.
PLOS ONE | 2012
Klaartje van Engelen; Mathilda T.M. Mommersteeg; Marieke J.H. Baars; Jan Lam; Aho Ilgun; A. S. Paul van Trotsenburg; Anne M. J. B. Smets; Vincent M. Christoffels; B. J. M. Mulder; Alex V. Postma
NKX2-5 is a homeodomain-containing transcription factor implied in both heart and thyroid development. Numerous mutations in NKX2-5 have been reported in individuals with congenital heart disease (CHD), but recently a select few have been associated with thyroid dysgenesis, among which the p.A119S variation. We sequenced NKX2-5 in 303 sporadic CHD patients and 38 families with at least two individuals with CHD. The p.A119S variation was identified in two unrelated patients: one was found in the proband of a family with four affected individuals with CHD and the other in a sporadic CHD patient. Clinical evaluation of heart and thyroid showed that the mutation did not segregate with CHD in the familial case, nor did any of the seven mutation carriers have thyroid abnormalities. We tested the functional consequences of the p.A119S variation in a cellular context by performing transactivation assays with promoters relevant for both heart and thyroid development in rat heart derived H10 cells and HELA cells. There was no difference between wildtype NKX2-5 and p.A119S NKX2-5 in activation of the investigated promoters in both cell lines. Additionally, we reviewed the current literature on the topic, showing that there is no clear evidence for a major pathogenic role of NKX2-5 mutations in thyroid dysgenesis. In conclusion, our study demonstrates that p.A119S does not cause CHD or TD and that it is a rare variation that behaves equal to wildtype NKX2-5. Furthermore, given the wealth of published evidence, we suggest that NKX2-5 mutations do not play a major pathogenic role in thyroid dysgenesis, and that genetic testing of NKX2-5 in TD is not warranted.
Circulation-cardiovascular Genetics | 2013
Chrysovalanto Mamasoula; R. Reid Prentice; Tomasz Pierscionek; Faith Pangilinan; James L. Mills; Charlotte M. Druschel; Kenneth A. Pass; Mark W. Russell; Darroch Hall; Ana Töpf; Danielle L. Brown; Diana Zelenika; Jamie Bentham; Catherine Cosgrove; Shoumo Bhattacharya; Javier Granados Riveron; Kerry Setchfield; J. David Brook; Frances Bu'Lock; Chris Thornborough; Thahira Rahman; Julian Palomino Doza; Huay Lin Tan; John O'Sullivan; A. Graham Stuart; Gillian M. Blue; David S. Winlaw; Alex V. Postma; Barbara J.M. Mulder; Aelko H. Zwinderman
Background—Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. Methods and Results—We compared genotypes between CHD cases and controls and between mothers of CHD cases and controls. We placed our results in context by conducting meta-analyses of previously published studies. Among 5814 cases with primary genotype data and 10 056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (odds ratio [OR], 0.96 [95% confidence interval, 0.87–1.07]). A random-effects meta-analysis of all studies (involving 7697 cases and 13 125 controls) suggested the presence of association (OR, 1.25 [95% confidence interval, 1.03–1.51]; P=0.022) but with substantial heterogeneity among contributing studies (I2=64.4%) and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR <0.05), which together contributed 83% of all cases, yielded no evidence of association (OR, 0.97 [95% confidence interval, 0.91–1.03]) without significant heterogeneity (I2=0). Moreover, meta-analysis of 1781 mothers of CHD cases (829 of whom were genotyped in this study) and 19 861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR, 1.13 [95% confidence interval, 0.87–1.47]). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. Conclusions—The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association.
Fetal Diagnosis and Therapy | 2014
Klaartje van Engelen; Margot M. Bartelings; Adriana C. Gittenberger-de Groot; Marieke J.H. Baars; Alex V. Postma; Emilia K. Bijlsma; Barbara J.M. Mulder; Monique R.M. Jongbloed
Introduction: Bicuspid aortic valve (BAV) is common in Turner syndrome (TS). In adult TS, 82-95% of BAVs have fusion of the right and left coronary leaflets. Data in fetal stages are scarce. The purpose of this study was to gain insight into aortic valve morphology and associated cardiovascular abnormalities in a fetal TS cohort with adverse outcome early in development. Material and Methods: We studied post-mortem heart specimens of 36 TS fetuses and 1 TS newborn. Results: BAV was present in 28 (76%) hearts. BAVs showed fusion of the right and left coronary leaflet (type 1 BAV) in 61%, and fusion of the right coronary and non-coronary leaflet (type 2 BAV) in 39%. There were no significant differences in occurrence of additional cardiovascular abnormalities between type 1 and type 2 BAV. However, all type 2 BAV hearts showed ascending aorta hypoplasia and tubular hypoplasia of the B segment, as opposed to only 55 and 64% of type 1 BAV hearts, respectively. Discussion: The proportion of type 2 BAV seems higher in TS fetuses than in adults. Fetal type 2 BAV hearts all had severe aortic pathology, possibly contributing to a worse prognosis of type 2 than type 1 BAV in TS.