Klaas J. Wierenga
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaas J. Wierenga.
Iubmb Life | 2009
Kent Lai; Louis J. Elsas; Klaas J. Wierenga
In most organisms, productive utilization of galactose requires the highly conserved Leloir pathway of galactose metabolism. Yet, if this metabolic pathway is perturbed due to congenital deficiencies of the three associated enzymes, or an overwhelming presence of galactose, this monosaccharide which is abundantly present in milk and many non‐dairy foodstuffs, will become highly toxic to humans and animals. Despite more than four decades of intense research, little is known about the molecular mechanisms of galactose toxicity in human patients and animal models. In this contemporary review, we take a unique approach to present an overview of galactose toxicity resulting from the three known congenital disorders of galactose metabolism and from experimental hypergalactosemia. Additionally, we update the reader about research progress on animal models, as well as advances in clinical management and therapies of these disorders.
American Journal of Human Genetics | 2014
Seema R. Lalani; Jing Zhang; Christian P. Schaaf; Chester W. Brown; Pilar L. Magoulas; Anne Chun Hui Tsai; Areeg El-Gharbawy; Klaas J. Wierenga; Dennis Bartholomew; Chin-To Fong; Tina Barbaro-Dieber; Mary K. Kukolich; Lindsay C. Burrage; Elise G. Austin; Kory Keller; Matthew Pastore; Fabio Fernandez; Timothy Lotze; Angus A. Wilfong; Gabriela Purcarin; Wenmiao Zhu; William J. Craigen; Marianne McGuire; Mahim Jain; Erin Cooney; Mahshid S. Azamian; Matthew N. Bainbridge; Donna M. Muzny; Eric Boerwinkle; Richard E. Person
5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.
Journal of Biomolecular Screening | 2008
Klaas J. Wierenga; Kent Lai; Peter Buchwald; Manshu Tang
Inherited deficiency of galactose-1-phosphate uridyltransferase (GALT) can result in a potentially lethal disorder called classic galactosemia. Although the neonatal lethality associated with this disease can be prevented through early diagnosis and a galactose-restricted diet, the lack of effective therapy continues to have consequences: developmental delay, neurological disorders, and premature ovarian failure are common sequelae in childhood and adulthood. Several lines of evidence indicate that an elevated level of galactose-1-phosphate (gal-1-p), the product of galactokinase (GALK), is a major, if not sole, pathogenic mechanism in patients with classic galactosemia. The authors hypothesize that elimination of gal-1-p production by inhibiting GALK will relieve GALT-deficient cells from galactose toxicity. To test this hypothesis, they obtained human GALK using a bacterial expression system. They developed a robust, miniaturized, high-throughput GALK assay (Z′ factor = 0.91) and used this assay to screen against libraries composed of 50,000 chemical compounds with diverse structural scaffolds. They selected 150 compounds that, at an average concentration of 33.3 µM, inhibited GALK activity in vitro more than 86.5% and with a reproducibility score of at least 0.7 for a confirmatory screen under identical experimental conditions. Of these 150 compounds, 34 were chosen for further characterization. Preliminary results indicated that these 34 compounds have potential to serve as leads to the development of more effective therapy of classic galactosemia. ( Journal of Biomolecular Screening 2008:415-423)
Genetics in Medicine | 2013
Klaas J. Wierenga; Zhijie Jiang; Amy Yang; John J. Mulvihill; Nicholas F. Tsinoremas
Purpose:This report describes a fast online tool to accelerate and improve clinical interpretation of single nucleotide polymorphism array results for diagnostic purposes, when consanguinity or inbreeding is identified.Methods:We developed a web-based program that permits entry of regions of homozygosity and, using OMIM, UCSC, and NCBI databases, retrieves genes within these regions as well as their associated autosomal recessive disorders. Relevant OMIM Clinical Synopses can be searched, using key clinical terms permitting further filtering for candidate genes and disorders.Results:The tool aids the clinician by arriving at a short list of relevant candidate disorders, guiding the continued diagnostic work-up. Its efficacy is illustrated by presenting seven patients who were diagnosed using this tool.Conclusion:The online single nucleotide polymorphism array evaluation tool rapidly and systematically identifies relevant genes and associated conditions mapping to identified regions of homozygosity. The built-in OMIM clinical feature search allows the user to further filter to reach a short list of candidate conditions relevant for the diagnosis, making it possible to strategize more focused diagnostic testing. The tabulated results can be downloaded and saved to the desktop in an Excel format. Its efficacy is illustrated by providing a few clinical examples.Genet Med 2013:15(5):354–360
Chemico-Biological Interactions | 2010
Manshu Tang; Klaas J. Wierenga; Louis J. Elsas; Kent Lai
Human galactokinase (GALK) is the first enzyme in the Leloir pathway, converting α-d-galactose into galactose-1-phosphate (Gal-1-P). Recently, there is increasing interest in targeting GALK as a novel therapy to ameliorate the disease manifestations in patients with Classic Galactosemia as it would, in combination with (ga-)lactose restriction reduce accumulation of Gal-1-P, a cytotoxic agent. Previously, we identified 34 small molecule compounds that inhibited GALK in vitro using experimental high-throughput screening. In order to isolate useful lead compounds, we characterized these hits with regards to their kinase selectivity profiles, potency and capability to reduce Gal-1-P accumulation in patient cell lines, and their modes of action. We found that the majority of these compounds had IC(50)s ranging from 0.7μM to 33.3μM. When tested against other members of the GHMP kinase family, three compounds (1, 4, and 24) selectively inhibited GALK with high potency. Through alignment of GALK and mevalonate kinase (MVK) crystal structures, we identified that eight amino acid residues and an L1 loop were different within the ATP-binding pockets of these two closely related kinases. By site-directed mutagenesis experiments, we identified one amino acid residue required for the inhibitory function of two of the three selective compounds. Based on these results, we generated binding models of these two compounds using a high-precision docking program. Compounds 4 and 24 inhibited GALK in a mixed model, while compound 1 exhibited parabolic competitive inhibition. Most importantly, using cells from galactosemic patients we found that selected compounds lowered Gal-1-P concentrations.
Molecular Genetics and Metabolism | 2012
Manshu Tang; Sina I. Odejinmi; Hariprasad Vankayalapati; Klaas J. Wierenga; Kent Lai
Classic Galactosemia is an autosomal recessive disorder caused by the deficiency of galactose-1-phosphate uridylyltransferase (GALT), one of the key enzymes in the Leloir pathway of galactose metabolism. While the neonatal morbidity and mortality of the disease are now mostly prevented by newborn screening and galactose restriction, long-term outcome for older children and adults with this disorder remains unsatisfactory. The pathophysiology of Classic Galactosemia is complex, but there is convincing evidence that galactose-1-phosphate (gal-1P) accumulation is a major, if not the sole pathogenic factor. Galactokinase (GALK) inhibition will eliminate the accumulation of gal-1P from both dietary sources and endogenous production, and efforts toward identification of therapeutic small molecule GALK inhibitors are reviewed in detail. Experimental and computational high-throughput screenings of compound libraries to identify GALK inhibitors have been conducted, and subsequent studies aimed to characterize, prioritize, as well as to optimize the identified positives have been implemented to improve the potency of promising compounds. Although none of the identified GALK inhibitors inhibits glucokinase and hexokinase, some of them cross-inhibit other related enzymes in the GHMP small molecule kinase superfamily. While this finding may render the on-going hit-to-lead process more challenging, there is growing evidence that such cross-inhibition could also lead to advances in antimicrobial and anti-cancer therapies.
The Journal of Molecular Diagnostics | 2016
Lan Qin; Jing Wang; Xia Tian; Hui Yu; Cavatina Truong; John J. Mitchell; Klaas J. Wierenga; William J. Craigen; Victor Wei Zhang; Lee-Jun C Wong
The identification of mosaicism is important in establishing a disease diagnosis, assessing recurrence risk, and genetic counseling. Next-generation sequencing (NGS) with deep sequence coverage enhances sensitivity and allows for accurate quantification of the level of mosaicism. NGS identifies low-level mosaicism that would be undetectable by conventional Sanger sequencing. A customized DNA probe library was used for capturing targeted genes, followed by deep NGS analysis. The mean coverage depth per base was approximately 800×. The NGS sequence data were analyzed for single-nucleotide variants and copy number variations. Mosaic mutations in 10 cases/families were detected and confirmed by NGS analysis. Mosaicism was identified for autosomal dominant (JAG1, COL3A1), autosomal recessive (PYGM), and X-linked (PHKA2, PDHA1, OTC, and SLC6A8) disorders. The mosaicism was identified either in one or more tissues from the probands or in a parent of an affected child. When analyzing data from patients with unusual testing results or inheritance patterns, it is important to further evaluate the possibility of mosaicism. Deep NGS analysis not only provides insights into the spectrum of mosaic mutations but also underlines the importance of the detection of mosaicism as an integral part of clinical molecular diagnosis and genetic counseling.
JAMA Neurology | 2010
Bulent Kurt; Jaak Jaeken; Johan L. K. Van Hove; Lieven Lagae; A. Löfgren; David B. Everman; Parul Jayakar; Ali Naini; Klaas J. Wierenga; Gert Van Goethem; William C. Copeland; Salvatore DiMauro
OBJECTIVE To describe a novel POLG missense mutation (c.3218C>T; p.P1073L) that, in association with 2 previously described mutations, caused an Alpers-like hepatocerebral syndrome in 4 children. DESIGN Genotype-phenotype correlation. SETTING Tertiary care universities. PATIENTS Four children, 2 related and 2 unrelated, with the novel p.P1073L mutation (all patients) and either the p.A467T (2 patients), p.G848S (1 patient), or p.W748S (1 patient) mutation presented with psychomotor delay, encephalopathy, and liver failure. INTERVENTIONS Detailed clinical and laboratory examinations including brain magnetic resonance imaging, muscle biopsy, measurement of mitochondrial DNA, and sequencing of the POLG gene. MAIN OUTCOME MEASURES Definition of clinical variability. RESULTS All 4 patients had psychomotor delay, seizures, and liver disease. Three patients had severe gastrointestinal dysmotility, which may be associated with the new p.P1073L mutation. CONCLUSIONS The heterozygous presence of the novel p.P1073L mutation in trans with another recessive POLG mutation causes a hepatocerebral disorder identical or very similar to Alpers syndrome. This adds to the already striking clinical heterogeneity of POLG mutations. In the Belgian patients, the familial occurrence without consanguinity is related to the high frequency of the recessive p.A467T and p.W748S mutations in northwestern Europe and reveals a pitfall for diagnosis and genetic counseling.
American Journal of Medical Genetics Part A | 2012
Kevin A. Winters; Zhijie Jiang; Weihong Xu; Shibo Li; Zineb Ammous; Parul Jayakar; Klaas J. Wierenga
We report on a 16‐year‐old female originally diagnosed with Marden‐Walker syndrome due to features such as facial dysmorphism, several musculoskeletal anomalies, and atrial septal defect in addition to hypoplasia of the inferior vermis with normal‐sized cerebellum and absence of the septum pellucidum. However, an SNP array performed at age 15 years detected a total of 142 Mb of long runs of homozygosity (ROH), and put the diagnosis in doubt. Using the Genomic Oligoarray and SNP array evaluation tool (http://www.ccs.miami.edu/ROH), CHST14 provided a “hit” as a gene mapping to the largest ROH region associated with a phenotype matching our patients (if mutated). At that time, she was a cognitively intact, thin female with growth parameters below the 3rd percentile. Craniofacial features included microcephaly, midface hypoplasia, blepharophimosis, entropion, myopia, microretrognathia, and dental malocclusion. Musculoskeletal features included kyphoscoliosis, arachnodactyly, camptodactyly, and rocker‐bottom feet with interphalangeal contractures. Her skin displayed large ecchymoses and poorly healed atrophic scars. Sequencing of CHST14 revealed a complex homozygous frameshift mutation involving a 7‐bp deletion and an 11‐bp insertion predicted to produce a truncated protein. This mutation was not seen in 100 controls of various ethnicities. Thus, our patient represents not only a novel (homozygous) mutation in CHST14, but is also the first patient with dermatan 4‐O‐sulfotransferase 1‐deficient Ehlers‐Danlos syndrome (adducted thumb‐clubfoot syndrome) (DD‐EDS ATCS) documented in the Western Hemisphere. Furthermore, our patients central nervous system anomalies have not before been described in DD‐EDS (ATCS).
European Journal of Human Genetics | 2015
Jia-Chi Wang; Leslie Ross; Loretta W Mahon; Renius Owen; Morteza Hemmat; Boris T Wang; Mohammed El Naggar; Kimberly A Kopita; Linda M. Randolph; John Chase; Maria J. Matas Aguilera; Juan López Siles; Joseph A. Church; Natalie S. Hauser; Joseph Shen; Marilyn C. Jones; Klaas J. Wierenga; Zhijie Jiang; Mary Haddadin; Fatih Z Boyar; Arturo Anguiano; Charles M. Strom; Trilochan Sahoo
Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader–Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases.