Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klas I. Udekwu is active.

Publication


Featured researches published by Klas I. Udekwu.


Biomaterials | 2012

The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles.

Emilio I. Alarcon; Klas I. Udekwu; Mårten Skog; Natalia L. Pacioni; Kevin G. Stamplecoskie; María González-Béjar; Naresh Polisetti; Abeni Wickham; Agneta Richter-Dahlfors; May Griffith; J. C. Scaiano

Spherical 3.5 nm diameter silver nanoparticles (AgNP) stabilized in type I collagen (AgNP@collagen) were prepared in minutes (5-15 min) at room temperature by a photochemical method initiated by UVA irradiation of a water-soluble non-toxic benzoin. This biocomposite was examined to evaluate its biocompatibility and its anti-bacterial properties and showed remarkable properties. Thus, while keratinocytes and fibroblasts were not affected by AgNP@collagen, it was bactericidal against Bacillus megaterium and E. coli but only bacteriostatic against S. epidermidis. In particular, the bactericidal properties displayed by AgNP@collagen were proven to be due to AgNP in AgNP@collagen, rather than to released silver ions, since equimolar concentrations of Ag are about four times less active than AgNP@collagen based on total Ag content. This new biocomposite was stable over a remarkable range of NaCl, phosphate, and 2-(N-morpholino)ethanesulfonic acid concentrations and for over one month at 4 °C. Circular dichroism studies show that the conformation of collagen in AgNP@collagen remains intact. Finally, we have compared the properties of AgNP@collagen with a similar biocomposite prepared using α-poly-L-Lysine and also with citrate stabilized AgNP; neither of these materials showed comparable biocompatibility, stability, or anti-bacterial activity.


Journal of Antimicrobial Chemotherapy | 2009

Functional relationship between bacterial cell density and the efficacy of antibiotics

Klas I. Udekwu; Nicholas Parrish; Peter Ankomah; Fernando Baquero; Bruce R. Levin

OBJECTIVES To determine the functional relationship between the density of bacteria and the pharmacodynamics of antibiotics, and the potential consequences of this inoculum effect on the microbiological course of antibiotic treatment of Staphylococcus aureus infections. METHODS In vitro time-kill, MIC estimation and antibiotic bioassay experiments were performed with S. aureus ATCC 25923 to ascertain the functional relationship between rates of kill and the MICs of six classes of antibiotics and the density of bacteria exposed. The potential consequences of the observed inoculum effects on the microbiological course of antibiotic treatment are explored with a mathematical model. RESULTS Modest or substantial inoculum effects on efficacy were observed for all six antibiotics studied, such as density-dependent declines in the rate and extent of antibiotic-mediated killing and increases in MIC. Although these measures of antibiotic efficacy declined with inoculum, this density effect did not increase monotonically. At higher densities, the rate of kill of ciprofloxacin and oxacillin declined with the antibiotic concentration. For daptomycin and vancomycin, much of this inoculum effect is due to density-dependent reductions in the effective concentration of the antibiotic. For the other four antibiotics, this density effect is primarily associated with a decrease in per-cell antibiotic concentration. With parameters in the range estimated, our mathematical model predicts that the course of antibiotic treatment can be affected by cell density; treatment protocols based on conventional (density-independent) MICs can fail to clear higher density infections. CONCLUSIONS The MICs used for pharmacokinetic/pharmacodynamic indices should be functions of the anticipated densities of the infecting population.


Antimicrobial Agents and Chemotherapy | 2010

Population Dynamics of Antibiotic Treatment: a Mathematical Model and Hypotheses for Time-Kill and Continuous-Culture Experiments

Bruce R. Levin; Klas I. Udekwu

ABSTRACT The objectives of the study were to develop a quantitative framework for generating hypotheses for and interpreting the results of time-kill and continuous-culture experiments designed to evaluate the efficacy of antibiotics and to relate the results of these experiments to MIC data. A mathematical model combining the pharmacodynamics (PD) of antibiotics with the population dynamics of bacteria exposed to these drugs in batch and continuous cultures was developed, and its properties were analyzed numerically (using computer simulations). These models incorporate details of (i) the functional form of the relationship between the concentrations of the antibiotics and rates of kill, (ii) the density of the target population of bacteria, (iii) the growth rate of the bacteria, (iv) byproduct resources generated from dead bacteria, (v) antibiotic-refractory subpopulations, persistence, and wall growth (biofilms), and (vi) density-independent and -dependent decay in antibiotic concentrations. Each of the factors noted above can profoundly affect the efficacy of antibiotics. Consequently, if the traditional (CLSI) MICs represent the sole pharmacodynamic parameter, PK/PD indices can fail to predict the efficacy of antibiotic treatment protocols. More comprehensive pharmacodynamic data obtained with time-kill and continuous-culture experiments would improve the predictive value of these indices. The mathematical model developed here can facilitate the design and interpretation of these experiments. The validity of the assumptions behind the construction of these models and the predictions (hypotheses) generated from the analysis of their properties can be tested experimentally. These hypotheses are presented, suggestions are made about how they can be tested, and the existing statuses of these tests are briefly discussed.


Molecular Psychiatry | 2017

The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior

Tim Arentsen; Yu Qian; Spyridon Gkotzis; T. Femenia; T. Wang; Klas I. Udekwu; Hans Forssberg; R. Diaz Heijtz

Recent studies have revealed that the gut microbiota modulates brain development and behavior, but the underlying mechanisms are still poorly understood. Here, we show that bacterial peptidoglycan (PGN) derived from the commensal gut microbiota can be translocated into the brain and sensed by specific pattern-recognition receptors (PRRs) of the innate immune system. Using expression-profiling techniques, we demonstrate that two families of PRRs that specifically detect PGN (that is, PGN-recognition proteins and NOD-like receptors), and the PGN transporter PepT1 are highly expressed in the developing brain during specific windows of postnatal development in both males and females. Moreover, we show that the expression of several PGN-sensing molecules and PepT1 in the developing striatum is sensitive to manipulations of the gut microbiota (that is, germ-free conditions and antibiotic treatment). Finally, we used the PGN-recognition protein 2 (Pglyrp2) knockout mice to examine the potential influence of PGN-sensing molecules on brain development and behavior. We demonstrate that the absence of Pglyrp2 leads to alterations in the expression of the autism risk gene c-Met, and sex-dependent changes in social behavior, similar to mice with manipulated microbiota. These findings suggest that the central activation of PRRs by microbial products could be one of the signaling pathways mediating the communication between the gut microbiota and the developing brain.


Current Opinion in Microbiology | 2014

Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics.

Bruce R. Levin; Jeniffer Concepción-Acevedo; Klas I. Udekwu

We postulate that phenotypic resistance to antibiotics, persistence, is not an evolved (selected-for) character but rather like mutation, an inadvertent product of different kinds of errors and glitches. The rate of generation of these errors is augmented by exposure to these drugs. The genes that have been identified as contributing to the production of persisters are analogous to the so-called mutator genes; they modulate the rate at which these errors occur and/or are corrected. In theory, these phenotypically resistant bacteria can retard the rate of microbiological cure by antibiotic treatment.


Journal of Antimicrobial Chemotherapy | 2012

Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic

Karen L. Nielsen; Thomas M. Pedersen; Klas I. Udekwu; Andreas Petersen; Robert Skov; Lars Hestbjerg Hansen; Diarmaid Hughes; Niels Frimodt-Møller

OBJECTIVES Denmark and several other countries experienced the first epidemic of methicillin-resistant Staphylococcus aureus (MRSA) during the period 1965-75, which was caused by multiresistant isolates of phage complex 83A. In Denmark these MRSA isolates disappeared almost completely, being replaced by other phage types, predominantly only penicillin resistant. We investigated whether isolates of this epidemic were associated with a fitness cost, and we employed a mathematical model to ask whether these fitness costs could have led to the observed reduction in frequency. METHODS Bacteraemia isolates of S. aureus from Denmark have been stored since 1957. We chose 40 S. aureus isolates belonging to phage complex 83A, clonal complex 8 based on spa type, ranging in time of isolation from 1957 to 1980 and with various antibiograms, including both methicillin-resistant and -susceptible isolates. The relative fitness of each isolate was determined in a growth competition assay with a reference isolate. RESULTS Significant fitness costs of 2%-15% were determined for the MRSA isolates studied. There was a significant negative correlation between number of antibiotic resistances and relative fitness. Multiple regression analysis found significantly independent negative correlations between fitness and the presence of mecA or streptomycin resistance. Mathematical modelling confirmed that fitness costs of the magnitude carried by these isolates could result in the disappearance of MRSA prevalence during a time span similar to that seen in Denmark. CONCLUSIONS We propose a significant fitness cost of resistance as the main bacteriological explanation for the disappearance of the multiresistant complex 83A MRSA in Denmark following a reduction in antibiotic usage.


Developmental and Comparative Immunology | 2011

Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids

Boran Altincicek; Bas ter Braak; Alice M. Laughton; Klas I. Udekwu; Nicole M. Gerardo

To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system.


Nanoscale | 2015

Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds

Emilio I. Alarcon; Klas I. Udekwu; Christopher W. Noel; Luke B.-P. Gagnon; Patrick K. Taylor; Branka Vulesevic; Madeline J. Simpson; Spyridon Gkotzis; Mohammed Mirazul Islam; Chyan-Jang Lee; Agneta Richter-Dahlfors; Thien-Fah Mah; Erik J. Suuronen; J. C. Scaiano; May Griffith

The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and other inflammation markers (CCL24, sTNFR-2, and TIMP1). Finally, an analysis of silver contents in implanted mice showed that silver accumulation primarily occurred within the tissue surrounding the implant.


Science Translational Medicine | 2015

Classic reaction kinetics can explain complex patterns of antibiotic action

Abel Zur Wiesch P; Sören Abel; Spyridon Gkotzis; Ocampo P; Jan Engelstädter; Trevor Hinkley; Carsten Magnus; Matthew K. Waldor; Klas I. Udekwu; Ted Cohen

Chemical reaction kinetics explain three different effects of drug-mediated bacterial killing. Antibiotics, pure and simple Antibiotics are powerful tools in fighting bacterial infection, but overuse and misuse are taking their tolls, leading to development of drug-resistant bacteria. Abel zur Wiesch et al. now report that simple chemical binding kinetics can explain three effects of antibiotics previously considered to have different causes: post-antibiotic growth suppression, density-dependent antibiotic effects, and persister cell formation. They report a theoretical model that links chemical reaction kinetics to bacterial population biology and validate this model both experimentally and with data from a tuberculosis clinical trial. This model may help optimize dosing and aid rational design of antibiotic treatment strategies. Finding optimal dosing strategies for treating bacterial infections is extremely difficult, and improving therapy requires costly and time-intensive experiments. To date, an incomplete mechanistic understanding of drug effects has limited our ability to make accurate quantitative predictions of drug-mediated bacterial killing and impeded the rational design of antibiotic treatment strategies. Three poorly understood phenomena complicate predictions of antibiotic activity: post-antibiotic growth suppression, density-dependent antibiotic effects, and persister cell formation. We show that chemical binding kinetics alone are sufficient to explain these three phenomena, using single-cell data and time-kill curves of Escherichia coli and Vibrio cholerae exposed to a variety of antibiotics in combination with a theoretical model that links chemical reaction kinetics to bacterial population biology. Our model reproduces existing observations, has a high predictive power across different experimental setups (R2 = 0.86), and makes several testable predictions, which we verified in new experiments and by analyzing published data from a clinical trial on tuberculosis therapy. Although a variety of biological mechanisms have previously been invoked to explain post-antibiotic growth suppression, density-dependent antibiotic effects, and especially persister cell formation, our findings reveal that a simple model that considers only binding kinetics provides a parsimonious and unifying explanation for these three complex, phenotypically distinct behaviours. Current antibiotic and other chemotherapeutic regimens are often based on trial and error or expert opinion. Our “chemical reaction kinetics”–based approach may inform new strategies, which are based on rational design.


Archive | 2015

Silver Nanoparticle Applications

Emilio I. Alarcon; May Griffith; Klas I. Udekwu

Exploring the synthesis, characterization, surface manipulation, electron transfer, and biological activity of silver nanoparticles, this book examines the fundamentals of the properties and synthesis of these particles. With a renewed interest in silver nanoparticles, this book addresses the need to understand their potential in industrial, medical, and other applications. It is divided into six chapters, each written by an expert and providing a comprehensive review of the topic while detailing recent advances made in each specific area. These topics include surface plasmon band, synthesis and characterization, Surface-enhanced Raman spectroscopy (SERS) and plasmon resonance mediated processes, photocatalysis, biomedical applications and biological activity. It also presents the current state of the art, challenges, and future trends of catalysis, sensing, and biomedical applications. Silver Nanoparticle Applications provides an invaluable reference work and introduction for chemists, biologists, physicists, and biomedical researchers who are interested in exploring the uses and applications of silver nanoparticles. It is also intended for students, researchers and professionals interested in nanotechnology

Collaboration


Dive into the Klas I. Udekwu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

May Griffith

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge