Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klas Tybrandt is active.

Publication


Featured researches published by Klas Tybrandt.


Nature Materials | 2009

Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function

Daniel T. Simon; Sindhulakshmi Kurup; Karin Larsson; Ryusuke Hori; Klas Tybrandt; Michel Goiny; Edwin Jager; Magnus Berggren; Barbara Canlon; Agneta Richter-Dahlfors

Significant advances have been made in the understanding of the pathophysiology, molecular targets and therapies for the treatment of a variety of nervous-system disorders. Particular therapies involve electrical sensing and stimulation of neural activity, and significant effort has therefore been devoted to the refinement of neural electrodes. However, direct electrical interfacing suffers from some inherent problems, such as the inability to discriminate amongst cell types. Thus, there is a need for novel devices to specifically interface nerve cells. Here, we demonstrate an organic electronic device capable of precisely delivering neurotransmitters in vitro and in vivo. In converting electronic addressing into delivery of neurotransmitters, the device mimics the nerve synapse. Using the peripheral auditory system, we show that out of a diverse population of cells, the device can selectively stimulate nerve cells responding to a specific neurotransmitter. This is achieved by precise electronic control of electrophoretic migration through a polymer film. This mechanism provides several sought-after features for regulation of cell signalling: exact dosage determination through electrochemical relationships, minimally disruptive delivery due to lack of fluid flow, and on-off switching. This technology has great potential as a therapeutic platform and could help accelerate the development of therapeutic strategies for nervous-system disorders.


Nature Communications | 2012

Logic gates based on ion transistors

Klas Tybrandt; Robert Forchheimer; Magnus Berggren

Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ion bipolar junction transistors

Klas Tybrandt; Karin Larsson; Agneta Richter-Dahlfors; Magnus Berggren

Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.


Journal of the American Chemical Society | 2011

Toward Complementary Ionic Circuits: The npn Ion Bipolar Junction Transistor

Klas Tybrandt; Erik O. Gabrielsson; Magnus Berggren

Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications.


Science Advances | 2016

Chemical delivery array with millisecond neurotransmitter release

Amanda Jonsson; Theresia Arbring Sjöström; Klas Tybrandt; Magnus Berggren; Daniel T. Simon

Addressable organic electronic neurotransmitter delivery array with switching ~50 ms, approaching synaptic signaling speed. Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses.


Advanced Materials | 2016

Bright Stretchable Alternating Current Electroluminescent Displays Based on High Permittivity Composites

Flurin Stauffer; Klas Tybrandt

A high permittivity composite is developed to enhance the brightness of stretchable electroluminescent displays. The unique two-step assembly process yields dense layers, in which the voids around the electroluminescent particles are filled with smaller high dielectric particles. A stretchable seven-segment display based on the composite is bright enough to be used under standard indoor lighting conditions.


Advanced Materials | 2014

A Four‐Diode Full‐Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity

Erik O. Gabrielsson; Per Janson; Klas Tybrandt; Daniel T. Simon; Magnus Berggren

Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.


Small | 2010

Spatially Controlled Amyloid Reactions Using Organic Electronics

Erik O. Gabrielsson; Klas Tybrandt; Per Hammarström; Magnus Berggren; K. Peter R. Nilsson

Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.


Small | 2016

Fast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration

Klas Tybrandt; Janos Vörös

Intrinsically stretchable multilayer circuit boards are fabricated with a fast and material efficient method based on filtration. Silver nanowire conductor patterns of outstanding performance are defined by filtration through wax printed membranes and the circuit board is assembled by subsequent transfers of the nanowires onto the elastomer substrate. The method is used to fabricate a bright stretchable light emitting diode matrix display.


Langmuir | 2014

Modeling of Charge Transport in Ion Bipolar Junction Transistors

Anton V. Volkov; Klas Tybrandt; Magnus Berggren; Igor Zozoulenko

Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poissons and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

Collaboration


Dive into the Klas Tybrandt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge