Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaske D. Lichtenbelt is active.

Publication


Featured researches published by Klaske D. Lichtenbelt.


American Journal of Human Genetics | 2011

Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder

Michael E. Talkowski; Sureni V Mullegama; Jill A. Rosenfeld; Bregje W.M. van Bon; Yiping Shen; Elena A. Repnikova; Julie M. Gastier-Foster; Devon Lamb Thrush; Sekar Kathiresan; Douglas M. Ruderfer; Colby Chiang; Carrie Hanscom; Carl Ernst; Amelia M. Lindgren; Cynthia C. Morton; Yu An; Caroline Astbury; Louise Brueton; Klaske D. Lichtenbelt; Lesley C. Adès; Marco Fichera; Corrado Romano; Jeffrey W. Innis; Charles A. Williams; Dennis Bartholomew; Margot I. Van Allen; Aditi Shah Parikh; Lilei Zhang; Bai-Lin Wu; Robert E. Pyatt

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


The New England Journal of Medicine | 2013

PLS3 Mutations in X-Linked Osteoporosis with Fractures

Fleur S. van Dijk; M. Carola Zillikens; Dimitra Micha; Markus Riessland; Carlo Marcelis; Christine E.M. de Die-Smulders; Janine Milbradt; A.A. Franken; Arjan J. Harsevoort; Klaske D. Lichtenbelt; Hans E. Pruijs; M. Estela Rubio-Gozalbo; Rolf Zwertbroek; Youssef Moutaouakil; Jaqueline Egthuijsen; Matthias Hammerschmidt; Renate Bijman; Cor M. Semeins; Astrid D. Bakker; Vincent Everts; Jenneke Klein-Nulend; Natalia Campos-Obando; Albert Hofman; Gerard J. te Meerman; Annemieke J. M. H. Verkerk; André G. Uitterlinden; Alessandra Maugeri; Erik A. Sistermans; Quinten Waisfisz; Hanne Meijers-Heijboer

Plastin 3 (PLS3), a protein involved in the formation of filamentous actin (F-actin) bundles, appears to be important in human bone health, on the basis of pathogenic variants in PLS3 in five families with X-linked osteoporosis and osteoporotic fractures that we report here. The bone-regulatory properties of PLS3 were supported by in vivo analyses in zebrafish. Furthermore, in an additional five families (described in less detail) referred for diagnosis or ruling out of osteogenesis imperfecta type I, a rare variant (rs140121121) in PLS3 was found. This variant was also associated with a risk of fracture among elderly heterozygous women that was two times as high as that among noncarriers, which indicates that genetic variation in PLS3 is a novel etiologic factor involved in common, multi-factorial osteoporosis.


European Journal of Human Genetics | 2010

The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype

Bregje W.M. van Bon; David A. Koolen; Louise Brueton; Dominic McMullan; Klaske D. Lichtenbelt; Lesley C. Adès; Gregory Peters; Kate Gibson; Francesca Novara; Tiziano Pramparo; Bernardo Dalla Bernardina; Leonardo Zoccante; Umberto Balottin; Fausta Piazza; Vanna Pecile; Paolo Gasparini; Veronica Ileana Guerci; Marleen Kets; Rolph Pfundt; Arjan P.M. de Brouwer; Joris A. Veltman; Nicole de Leeuw; Meredith Wilson; Jayne Antony; Santina Reitano; Daniela Luciano; Marco Fichera; Corrado Romano; Han G. Brunner; Orsetta Zuffardi

Six submicroscopic deletions comprising chromosome band 2q23.1 in patients with severe mental retardation (MR), short stature, microcephaly and epilepsy have been reported, suggesting that haploinsufficiency of one or more genes in the 2q23.1 region might be responsible for the common phenotypic features in these patients. In this study, we report the molecular and clinical characterisation of nine new 2q23.1 deletion patients and a clinical update on two previously reported patients. All patients were mentally retarded with pronounced speech delay and additional abnormalities including short stature, seizures, microcephaly and coarse facies. The majority of cases presented with stereotypic repetitive behaviour, a disturbed sleep pattern and a broad-based gait. These features led to the initial clinical impression of Angelman, Rett or Smith–Magenis syndromes in several patients. The overlapping 2q23.1 deletion region in all 15 patients comprises only one gene, namely, MBD5. Interestingly, MBD5 is a member of the methyl CpG-binding domain protein family, which also comprises MECP2, mutated in Retts syndrome. Another gene in the 2q23.1 region, EPC2, was deleted in 12 patients who had a broader phenotype than those with a deletion of MBD5 only. EPC2 is a member of the polycomb protein family, involved in heterochromatin formation and might be involved in causing MR. Patients with a 2q23.1 microdeletion present with a variable phenotype and the diagnosis should be considered in mentally retarded children with coarse facies, seizures, disturbed sleeping patterns and additional specific behavioural problems.


European Journal of Human Genetics | 2015

Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management.

Baran Bayindir; Luc Dehaspe; Nathalie Brison; Paul Brady; Simon Ardui; Molka Kammoun; Lars T. van der Veken; Klaske D. Lichtenbelt; Kris Van Den Bogaert; Jeroen Van Houdt; Hilde Peeters; Hilde Van Esch; Thomy de Ravel; Eric Legius; Koenraad Devriendt; Joris Vermeesch

Noninvasive prenatal testing by massive parallel sequencing of maternal plasma DNA has rapidly been adopted as a mainstream method for detection of fetal trisomy 21, 18 and 13. Despite the relative high accuracy of current NIPT testing, a substantial number of false-positive and false-negative test results remain. Here, we present an analysis pipeline, which addresses some of the technical as well as the biologically derived causes of error. Most importantly, it differentiates high z-scores due to fetal trisomies from those due to local maternal CNVs causing false positives. This pipeline was retrospectively validated for trisomy 18 and 21 detection on 296 samples demonstrating a sensitivity and specificity of 100%, and applied prospectively to 1350 pregnant women in the clinical diagnostic setting with a result reported in 99.9% of cases. In addition, values indicative for trisomy were observed two times for chromosome 7 and once each for chromosomes 15 and 16, and once for a segmental trisomy 18. Two of the trisomies were confirmed to be mosaic, one of which contained a uniparental disomy cell line. As placental trisomies pose a risk for low-grade fetal mosaicism as well as uniparental disomy, genome-wide noninvasive aneuploidy detection is improving prenatal management.


Human Mutation | 2012

Prostaglandin transporter mutations cause pachydermoperiostosis with myelofibrosis

Christine P. Diggle; David A. Parry; Clare V. Logan; Paul Laissue; Carolina Rivera; Carlos Martín Restrepo; Dora Janeth Fonseca; J.E. Morgan; Yannick Allanore; Michaela Fontenay; Julien Wipff; Mathilde Varret; Laure Gibault; Nadezhda Dalantaeva; Márta Korbonits; Bowen Zhou; Gang Yuan; Ghita Harifi; Kivanc Cefle; Sukru Palanduz; Hadim Akoglu; Petra J.G. Zwijnenburg; Klaske D. Lichtenbelt; Bérengère Aubry-Rozier; Andrea Superti-Furga; Bruno Dallapiccola; Maria Accadia; Francesco Brancati; Eamonn Sheridan; Graham R. Taylor

Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin‐degrading enzyme 15‐hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E2 (PGE2) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole‐exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE2, but unlike HPGD‐deficient patients, also excreted considerable quantities of the PGE2 metabolite, PGE‐M. Clinical differences between the two groups were also identified, notably that SLCO2A1‐deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. Hum Mutat 33:1175–1181, 2012.


Cytogenetic and Genome Research | 2011

From Karyotyping to Array-CGH in Prenatal Diagnosis

Klaske D. Lichtenbelt; N.V.A.M. Knoers; G.H. Schuring-Blom

Conventional karyotyping detects chromosomal anomalies in up to 35% of pregnancies with fetal ultrasound anomalies, depending on the number and type of these anomalies. Extensive experience gained in the past decades has shown that prenatal karyotyping is a robust technique which can detect the majority of germline chromosomal anomalies. For most of these anomalies the phenotype is known. In postnatal diagnosis of patients with congenital anomalies and intellectual disability, array-CGH/SNP array has become the first-tier investigation. The higher abnormality detection yield and its amenability to automation renders array-CGH also suitable for prenatal diagnosis. As both findings of unclear significance and unexpected findings may be detected, studies on the outcome of array-CGH in prenatal diagnosis were initially performed retrospectively. Recently, prospective application of array-CGH in pregnancies with ultrasound anomalies, and to a lesser extent in pregnancies referred for other reasons, was studied. Array-CGH showed an increased diagnostic yield compared to karyotyping, varying from 1–5%, depending on the reason for referral. Knowledge of the spectrum of array-CGH anomalies detected in the prenatal setting will increase rapidly in the years to come, thus facilitating pre- and posttest counseling. Meanwhile, new techniques like non-invasive prenatal diagnosis are emerging and will claim their place. In this review, we summarize the outcome of studies on prenatal array-CGH, the clinical relevance of differences in detection rate and range as compared to standard karyotyping, and reflect on the future integration of new molecular techniques in the workflow of prenatal diagnosis.


Genetics in Medicine | 2016

Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families

Wilhelmina S. Kerstjens-Frederikse; Ingrid van de Laar; Yvonne J. Vos; Judith M.A. Verhagen; Rolf M.F. Berger; Klaske D. Lichtenbelt; Jolien S. Klein Wassink-Ruiter; Paul A. van der Zwaag; Gideon J. du Marchie Sarvaas; Klasien A. Bergman; C. M. Bilardo; Jolien W. Roos-Hesselink; Johan H P Janssen; Ingrid M.E. Frohn-Mulder; Karin Y. van Spaendonck-Zwarts; Joost P. van Melle; Robert M.W. Hofstra; Marja W. Wessels

Purpose:We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome.Methods:NOTCH1 was screened for mutations in 428 nonsyndromic probands with LS-CHD, and family histories were obtained for all. When a mutation was detected, relatives were also tested.Results:In 148/428 patients (35%), LS-CHD was familial. Fourteen mutations (3%; 5 RNA splicing mutations, 8 truncating mutations, 1 whole-gene deletion) were detected, 11 in familial disease (11/148 (7%)) and 3 in sporadic disease (3/280 (1%)). Forty-nine additional mutation carriers were identified among the 14 families, of whom 12 (25%) were asymptomatic. Most of these mutation carriers had LS-CHD, but 9 (18%) had right-sided congenital heart disease (RS-CHD) or conotruncal heart disease (CTD). Thoracic aortic aneurysms (TAAs) occurred in 6 mutation carriers (probands included 6/63 (10%)).Conclusion:Pathogenic mutations in NOTCH1 were identified in 7% of familial LS-CHD and in 1% of sporadic LS-CHD. The penetrance is high; a cardiovascular malformation was found in 75% of NOTCH1 mutation carriers. The phenotypic spectrum includes LS-CHD, RS-CHD, CTD, and TAA. Testing NOTCH1 for an early diagnosis in LS-CHD/RS-CHD/CTD/TAA is warranted.Genet Med 18 9, 914–923.


European Journal of Human Genetics | 2010

The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes

Aimee D.C. Paulussen; Constance T.R.M. Schrander-Stumpel; Demis Tserpelis; Matteus K. M. Spee; Alexander P.A. Stegmann; Grazia M.S. Mancini; Alice S. Brooks; Margriet J. Collee; Anneke Maat-Kievit; Marleen Simon; Yolande van Bever; Irene Stolte-Dijkstra; Wilhelmina S. Kerstjens-Frederikse; Johanna C. Herkert; Anthonie J. van Essen; Klaske D. Lichtenbelt; Arie van Haeringen; Mei L. Kwee; Augusta M. A. Lachmeijer; Gita M. B. Tan-Sindhunata; Merel C. van Maarle; Yvonne Arens; Eric Smeets; Christine E.M. de Die-Smulders; John J.M. Engelen; H.J.M. Smeets; Jos Herbergs

Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic. We screened four known HPE genes in a Dutch cohort of 86 non-syndromic HPE index cases, including 53 family members. We detected 21 mutations (24.4%), 3 in SHH, 9 in ZIC2 and 9 in SIX3. Eight mutations involved amino-acid substitutions, 7 ins/del mutations, 1 frame-shift, 3 identical poly-alanine tract expansions and 2 gene deletions. Pathogenicity of mutations was presumed based on de novo character, predicted non-functionality of mutated proteins, segregation of mutations with affected family-members or combinations of these features. Two mutations were reported previously. SNP array confirmed detected deletions; one spanning the ZIC2/ZIC5 genes (approx. 100 kb) the other a 1.45 Mb deletion including SIX2/SIX3 genes. The mutation percentage (24%) is comparable with previous reports, but we detected significantly less mutations in SHH: 3.5 vs 10.7% (P=0.043) and significantly more in SIX3: 10.5 vs 4.3% (P=0.018). For TGIF1 and ZIC2 mutation the rate was in conformity with earlier reports. About half of the mutations were de novo, one was a germ line mosaic. The familial mutations displayed extensive heterogeneity in clinical manifestation. Of seven familial index patients only two parental carriers showed minor HPE signs, five were completely asymptomatic. Therefore, each novel mutation should be considered as a risk factor for clinically manifest HPE, with the caveat of reduced clinical penetrance.


Prenatal Diagnosis | 2011

Trends in the utilization of invasive prenatal diagnosis in The Netherlands during 2000-2009.

Klaske D. Lichtenbelt; Behrooz Z. Alizadeh; Peter G. Scheffer; Philip Stoutenbeek; Peter C. J. I. Schielen; Lieve Page-Christiaens; G. Heleen Schuring-Blom

To analyze trends in the number and type of invasive procedure, reasons for referral, maternal age and chromosomal abnormalities over a 10‐year period and correlate the trends to changes in the national prenatal screening policy.


Neurology | 2015

Unexplained early-onset lacunar stroke and inflammatory skin lesions: Consider ADA2 deficiency

Willeke F. Westendorp; Paul J. Nederkoorn; Ivona Aksentijevich; A. Elisabeth Hak; Klaske D. Lichtenbelt; Kees P. J. Braun

We report 2 brothers who presented at young age with multiple lacunar strokes, inflammatory skin rash, and a range of neurologic symptoms.

Collaboration


Dive into the Klaske D. Lichtenbelt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolph Pfundt

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge