Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaudia Brix is active.

Publication


Featured researches published by Klaudia Brix.


PLOS ONE | 2008

A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages

Malgorzata Kubica; Krzysztof Guzik; Joanna Koziel; Mirosław Zarębski; Walter Richter; Barbara Gajkowska; Anna Golda; Agnieszka Maciag-Gudowska; Klaudia Brix; Les Shaw; Timothy J. Foster; Jan Potempa

Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3–4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-γ at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in α-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular α-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.


Journal of Clinical Investigation | 2003

Thyroid functions of mouse cathepsins B, K, and L

Bianca Friedrichs; Carmen Tepel; Thomas Reinheckel; Jan M. Deussing; Kurt von Figura; Volker Herzog; Christoph Peters; Paul Saftig; Klaudia Brix

Thyroid function depends on processing of the prohormone thyroglobulin by sequential proteolytic events. From in vitro analysis it is known that cysteine proteinases mediate proteolytic processing of thyroglobulin. Here, we have analyzed mice with deficiencies in cathepsins B, K, L, B and K, or K and L in order to investigate which of the cysteine proteinases is most important for proteolytic processing of thyroglobulin in vivo. Immunolabeling demonstrated a rearrangement of the endocytic system and a redistribution of extracellularly located enzymes in thyroids of cathepsin-deficient mice. Cathepsin L was upregulated in thyroids of cathepsin K(-/-) or B(-/-)/K(-/-) mice, suggesting a compensation of cathepsin L for cathepsin K deficiency. Impaired proteolysis resulted in the persistence of thyroglobulin in the thyroids of mice with deficiencies in cathepsin B or L. The typical multilayered appearance of extracellularly stored thyroglobulin was retained in cathepsin K(-/-) mice only. These results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form. Cathepsin K(-/-)/L(-/-) mice had significantly reduced levels of free thyroxine, indicating that utilization of luminal thyroglobulin for thyroxine liberation is mediated by a combinatory action of cathepsins K and L.


BMC Biochemistry | 2009

Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions

Silvia Jordans; Saša Jenko-Kokalj; Nicole M. Kühl; Sofia Tedelind; Wolfgang Sendt; Dieter Brömme; Dušan Turk; Klaudia Brix

BackgroundCysteine cathepsins are known to primarily cleave their substrates at reducing and acidic conditions within endo-lysosomes. Nevertheless, they have also been linked to extracellular proteolysis, that is, in oxidizing and neutral environments. Although the impact of reducing or oxidizing conditions on proteolytic activity is a key to understand physiological protease functions, redox conditions have only rarely been considered in routine enzyme activity assays. Therefore we developed an assay to test for proteolytic processing of a natural substrate by cysteine cathepsins which accounts for redox potentials and pH values corresponding to the conditions in the extracellular space in comparison to those within endo-lysosomes of mammalian cells.ResultsThe proteolytic potencies of cysteine cathepsins B, K, L and S towards thyroglobulin were analyzed under conditions simulating oxidizing versus reducing environments with neutral to acidic pH values. Thyroglobulin, the precursor molecule of thyroid hormones, was chosen as substrate, because it represents a natural target of cysteine cathepsins. Thyroglobulin processing involves thyroid hormone liberation which, under physiological circumstances, starts in the extracellular follicle lumen before being continued within endo-lysosomes. Our study shows that all cathepsins tested were capable of processing thyroglobulin at neutral and oxidizing conditions, although these are reportedly non-favorable for cysteine proteases. All analyzed cathepsins generated distinct fragments of thyroglobulin at extracellular versus endo-lysosomal conditions as demonstrated by SDS-PAGE followed by immunoblotting or N-terminal sequencing. Moreover, the thyroid hormone thyroxine was liberated by the action of cathepsin S at extracellular conditions, while cathepsins B, K and L worked most efficiently in this respect at endo-lysosomal conditions.ConclusionThe results revealed distinct cleavage patterns at all conditions analyzed, indicating compartment-specific processing of thyroglobulin by cysteine cathepsins. In particular, proteolytic activity of cathepsin S towards the substrate thyroglobulin can now be understood as instrumental for extracellular thyroid hormone liberation. Our study emphasizes that the proteolytic functions of cysteine cathepsins in the thyroid are not restricted to endo-lysosomes but include pivotal roles in extracellular substrate utilization. We conclude that understanding of the interplay and fine adjustment of protease networks in vivo is better approachable by simulating physiological conditions in protease activity assays.


EMBO Reports | 2010

Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU

Michael Berger; Anca M Farcas; Marcel Geertz; Petya Zhelyazkova; Klaudia Brix; Andrew Travers; Georgi Muskhelishvili

The histone‐like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild‐type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci—spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid.


Journal of Cell Science | 2002

Trafficking of lysosomal cathepsin B—green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment

Martin Linke; Volker Herzog; Klaudia Brix

Cathepsin B, a lysosomal cysteine proteinase, is involved in limited proteolysis of thyroglobulin with thyroxine liberation at the apical surface of thyroid epithelial cells. To analyze the trafficking of lysosomal enzymes to extracellular locations of thyroid epithelial cells, we have expressed a chimeric protein consisting of rat cathepsin B and green fluorescent protein. Heterologous expression in CHO cells validated the integrity of the structural motifs of the chimeric protein for targeting to endocytic compartments. Homologous expression, colocalization and transport experiments with rat thyroid epithelial cell lines FRT or FRTL-5 demonstrated the correct sorting of the chimeric protein into the lumen of the endoplasmic reticulum, and its subsequent transport via the Golgi apparatus and the trans-Golgi network to endosomes and lysosomes. In addition, the chimeras were secreted as active enzymes from FRTL-5 cells in a thyroid-stimulating-hormone-dependent manner. Immunoprecipitation experiments after pulse-chase radiolabeling showed that secreted chimeras lacked the propeptide of cathepsin B. Thus, the results suggest that cathepsin B is first transported to endosomes/lysosomes from where its matured form is retrieved before being secreted, supporting the view that endosome/lysosome-derived cathepsin B contributes to the potential of extracellular proteolysis in the thyroid.


Biological Chemistry | 2001

Cysteine Proteinases Mediate Extracellular Prohormone Processing in the Thyroid

Klaudia Brix; Martin Linke; Carmen Tepel; Volker Herzog

Abstract Thyroglobulin, the precursor of thyroid hormones, is extracellularly stored in a highly condensed and covalently crosslinked form. Solublization of thyroglobulin is facilitated by cysteine proteinases like cathepsins B and K which are proteolytically active at the surface of thyroid epithelial cells. The cysteine proteinases mediate the processing of thyroglobulin by limited extracellular proteolysis at the apical plasma membrane, thereby rapidly liberating thyroxine. The trafficking of cysteine proteinases in thyroid epithelial cells includes their targeting to lysosomes where they become maturated before being transported to the apical plasma membrane and, thus, into the extracellular follicle lumen. We propose that thyroid stimulating hormone regulates extracellular proteolysis of thyroglobulin in that it enhances the rate of exocytosis of lysosomal proteins at the apical plasma membrane. Later, thyroid stimulating hormone upregulates thyroglobulin synthesis and its secretion into the follicle lumen for subsequent compaction by covalent crosslinking. Hence, cycles of thyroglobulin proteolysis and thyroglobulin deposition might result in the regulation of the size of the luminal content of thyroid follicles. We conclude that the biological significance of extracellularly acting cysteine proteinases of the thyroid is the rapid utilization of thyroglobulin for the maintenance of constant thyroid hormone levels in vertebrate organisms.


Journal of Vascular Research | 2002

Altered Dye Diffusion and Upregulation of Connexin37 in Mouse Aortic Endothelium Deficient in Connexin40

Olaf Krüger; Jean-Louis Bény; Fabienne Chabaud; Otto Traub; Martin Theis; Klaudia Brix; Susanne Kirchhoff; Klaus Willecke

Connexin40 (Cx40), connexin37 (Cx37) and connexin43 (Cx43) are subunit proteins of gap junction channels in the vascular wall which are presumably involved in the propagation of vasomotor signals. In this study we have investigated in Cx40-deficient versus wild-type aortic endothelium to which extent loss of Cx40 impairs intercellular communication. We show in Cx40-deficient mice that expression of both Cx37 and Cx43 protein was increased approximately 3- and 2-fold over the level in wild-type endothelium, respectively. Furthermore, Cx37 immunosignals were distributed more homogeneously on contacting plasma membranes in Cx40-deficient versus with wild-type endothelium. Cx43 was not detected in endothelium but only in smooth muscle cells of the vessel wall. Iontophoretic injection of Lucifer Yellow or neurobiotin into aortic endothelium of Cx40-deficient mice showed extensive intercellular transfer of neurobiotin but not of Lucifer Yellow. In contrast, intercellular spreading of Lucifer Yellow was observed in endothelium of wild-type aorta. As shown by electron microscopy, gap junctions in Cx40-deficient endothelium were morphologically different from those of wild-type vessels. These results demonstrate that dye diffusibility of endothelial gap junctions is different in Cx40-deficient and wild-type mice, although Cx40-deficient mice retain the capability of intercellular communication. Apparently, Cx40-deficient endothelial cells upregulate and redistribute Cx37 as a molecular adaptation to the lack of Cx40.


Neurobiology of Disease | 2008

LRP1 modulates APP trafficking along early compartments of the secretory pathway

Elaine Waldron; Catherine Heilig; Andrea Schweitzer; Nirupa Nadella; Sebastian Jaeger; Anne M. Martin; Sascha Weggen; Klaudia Brix; Claus U. Pietrzik

The amyloid beta peptide (A beta) is a central player in Alzheimers disease (AD) pathology. A beta liberation depends on APP cleavage by beta- and gamma-secretases. The low density lipoprotein receptor related protein 1 (LRP1) was shown to mediate APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. We wanted to investigate whether LRP1 mediates APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, the early trafficking of APP within the secretory pathway is strongly influenced by its interaction with the C-terminal domain of LRP1. The LRP1-construct expressing an ER-retention motif, LRP-CT KKAA, had the capacity to retard APP traffic to early secretory compartments. In addition, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases.


European Journal of Cell Biology | 2004

HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration

Heiko Büth; Brit Wolters; Benedikt Hartwig; Roland Meier-Bornheim; Henrike Veith; Maren Hansen; Christian P. Sommerhoff; Norbert Schaschke; Werner Machleidt; Norbert E. Fusenig; Petra Boukamp; Klaudia Brix

Cathepsin B, a lysosomal cysteine proteinase, was detected within vesicles of cellular protrusions forming cell-cell contact sites between keratinocytes of the stratum spinosum of human skin. This observation suggested the possibility that secretion of the protease into the pericellular spaces could be involved in the dissociation of cell-cell contacts to enable intraepidermal keratinocyte migration. To determine whether cathepsin B is indeed secreted from migrating keratinocytes, we first used subconfluent HaCaT cells as a culture model to study spontaneous keratinocyte migration. A cathepsin B-specific fluorescent affinity label proved the association of mature cathepsin B with the surfaces of HaCaT cells at the leading edges of growing cells. Second, we used scratch-wounds of confluent HaCaT monolayers as a model of induced keratinocyte migration. Cathepsin B was detected within lysosomes, i.e. vesicles within the perinuclear region of non-wounded cells. Expression of cathepsin B was up-regulated and cathepsin B-positive vesicles showed a redistribution from perinuclear to peripheral regions of keratinocytes at the wound margins within 4 h after wounding. Enzyme cytochemistry further showed that cell surface-associated cathepsin B was proteolytically active at the leading fronts of migrating keratinocytes. In addition, increased amounts of mature forms of cathepsin B were detected within the conditioned media of HaCaT cells during the first 4 h after scratch-wounding. In contrast, and as a control, the activity of the cytosolic enzyme lactate dehydrogenase was not significantly higher in media of wounded cells as compared with non-wounded controls, arguing for a specific induction of cathepsin B secretion upon wounding and migration of the cells. This was further substantiated by applying various cathepsin B-specific inhibitors after wounding. These experiments showed that the migration ability of keratinocytes was reduced due to the blockage of functional cathepsin B. Thus, our results strongly suggest that cell surface-associated cathepsin B is a protease that contributes to the remodelling of the extracellular matrix and thereby promotes keratinocyte migration during wound healing.


PLOS ONE | 2013

Nuclear Legumain Activity in Colorectal Cancer

Mads H. Haugen; Harald Thidemann Johansen; Solveig Pettersen; Rigmor Solberg; Klaudia Brix; Kjersti Flatmark; Gunhild M. Mælandsmo

The cysteine protease legumain is involved in several biological and pathological processes, and the protease has been found over-expressed and associated with an invasive and metastatic phenotype in a number of solid tumors. Consequently, legumain has been proposed as a prognostic marker for certain cancers, and a potential therapeutic target. Nevertheless, details on how legumain advances malignant progression along with regulation of its proteolytic activity are unclear. In the present work, legumain expression was examined in colorectal cancer cell lines. Substantial differences in amounts of pro- and active legumain forms, along with distinct intracellular distribution patterns, were observed in HCT116 and SW620 cells and corresponding subcutaneous xenografts. Legumain is thought to be located and processed towards its active form primarily in the endo-lysosomes; however, the subcellular distribution remains largely unexplored. By analyzing subcellular fractions, a proteolytically active form of legumain was found in the nucleus of both cell lines, in addition to the canonical endo-lysosomal residency. In situ analyses of legumain expression and activity confirmed the endo-lysosomal and nuclear localizations in cultured cells and, importantly, also in sections from xenografts and biopsies from colorectal cancer patients. In the HCT116 and SW620 cell lines nuclear legumain was found to make up approximately 13% and 17% of the total legumain, respectively. In similarity with previous studies on nuclear variants of related cysteine proteases, legumain was shown to process histone H3.1. The discovery of nuclear localized legumain launches an entirely novel arena of legumain biology and functions in cancer.

Collaboration


Dive into the Klaudia Brix's collaboration.

Top Co-Authors

Avatar

Dagmar Führer

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Maren Rehders

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise Zwanziger

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars C. Moeller

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Mads H. Haugen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Silvia Jordans

Jacobs University Bremen

View shared research outputs
Researchain Logo
Decentralizing Knowledge