Klaudia Kruppa
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaudia Kruppa.
Journal of Applied Genetics | 2013
Klaudia Kruppa; Adél Sepsi; Éva Szakács; Marion S. Röder; Márta Molnár-Láng
A spontaneous wheat-barley translocation line was previously detected in the progenies of the Mv9kr1 × ‘Igri’ wheat-barley hybrid and the translocation was identified as 5HS-7DS.7DL. Multicolor genomic in situ hybridization (mcGISH) with D and H genomic DNA probes and three-color fluorescence in situ hybridization (FISH) with repetitive DNA probes (Afa-family, pSc119.2, and pTa71) were performed to characterize the rearranged chromosome. The effect of 5HS and the deleted 7DS fragment on the morphological traits (plant height, fertility, yield, and spike characteristics) of wheat was assessed. Despite the non-compensating nature of the translocation, the plants showed good viability. The aim of the study was to physically localize SSR markers to the telomeric and subtelomeric regions of the 7DS chromosome arm. Of the 45 microsatellite markers analyzed, ten (Xbarc0184, Xwmc0506, Xgdm0130, Xgwm0735, Xgwm1258, Xgwm1123, Xgwm1250, Xgwm1055, Xgwm1220, and Xgwm0635) failed to amplify any 7DS-specific fragments, signaling the elimination of a short chromosome segment in the telomeric region. The breakpoint of the 5HS-7DS.7DL translocation appeared to be more distal than that of reported deletion lines, which provides a new physical landmark for future deletion mapping studies.
Photosynthetica | 2017
Dóra Szopkó; Éva Darkó; István Molnár; Klaudia Kruppa; Borbála Háló; András Vojtkó; Márta Molnár-Láng; Sándor Dulai
The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)–barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (PN), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in PN could largely be accounted for the salt-induced decline in stomatal conductance (gs), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, PN and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained gs, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both PN and gs decreased significantly in all the genotypes, but the changes in PN and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of PN was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat.
Cereal Research Communications | 2013
Klaudia Kruppa; Edina Türkösi; Éva Szakács; András Cseh; Márta Molnár-Láng
The 4H(4D) wheat/barley substitution line was crossed with the ‘Chinese Spring’ ph1b mutant genotype in order to induce wheat-barley homoeologous recombinations. F3 and F4 seeds of the 4H(4D) × ‘Chinese Spring’ ph1b mutant cross were analysed using genomic in situ hybridization, and a Robertsonian translocation was detected in monosomic form. Disomic centric fusions were selected among the self-fertilized progenies. The presence of the long arm of 4H was confirmed with SSR markers. The long arm of the 5D wheat chromosome in the Robertsonian translocation was identified using fluorescent in situ hybridization with the help of three DNA probes: pSc119.2, Afa family and pTa71. The wheat/barley centric fusion was identified as a 4HL.5DL translocation. This line exhibited supernumerary spikelet character, but the number of seeds/plant did not increase. The 4HL.5DL centric fusion line is suitable genetic material to study the expression of genes located on 4HL in a wheat genetic background.
Journal of Applied Genetics | 2013
Éva Szakács; Klaudia Kruppa; Márta Molnár-Láng
The aim of the present work was to study chromosomal polymorphism within cultivated barley (Hordeum vulgare ssp. vulgare) using three-color fluorescence in situ hybridization (FISH). The physical distribution of the most frequently used, highly repetitive DNA sequences (GAA)7 specific for pericentromeric heterochromatic regions, the ribosomal DNA clone pTa71, specific for the 45S rDNA, and the barley-specific telomere-associated sequence HvT01, was investigated to reveal genetic diversity in metaphase spreads of ten barley genotypes with diverse geographical origin, growth habit and row number. A wild relative of barley, Hordeum chilense was also studied in order to compare the polymorphism between and within Hordeum species. Significant differences in the hybridization patterns of all three DNA probes could be detected between the two related species, but only probes pTa71 and HvT01 showed variation in the intensity and/or position of hybridization sites among genotypes of H. vulgare ssp. vulgare. The extent of polymorphism was less than that earlier reported for molecular markers and was restricted to the long chromosome arms, with differences between the chromosomes. 1H and 3H proved to be the most variable chromosomes and 4H and 6H the most conserved.
Comparative Cytogenetics | 2016
Klaudia Kruppa; Márta Molnár-Láng
Abstract Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum bessarabicum (Săvulescu & Rayss, 1923) Á. Löve, 1984 (genome Jb or Eb, 2n = 14), and Pseudoroegneria spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum ponticum (Podpěra, 1902) Z.-W. Liu et R.-C.Wang, 1993 named „Agropyron glael” and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum intermedium contained 19 J, 9 JSt and 14 St chromosomes. The three analysed Thinopyrum ponticum accessions had different chromosome compositions: 43 J + 27 JSt (PI531737), 40 J + 30 JSt (VIR-44486) and 38 J + 32 JSt (D-3494). The synthetic hybrid carried 18 J, 28 JSt and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 JSt+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum intermedium/Thinopyrum ponticum synthetic hybrid called A. glael.
Journal of Applied Genetics | 2016
Klaudia Kruppa; Edina Türkösi; Marianna Mayer; Viola Tóth; Gyula Vida; Éva Szakács; Márta Molnár-Láng
A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.
Genome | 2011
András Cseh; Klaudia Kruppa; István Molnár; M. Rakszegi; J. Doležel; Márta Molnár-Láng
Genome | 2012
Márta Molnár-Láng; Klaudia Kruppa; András Cseh; Julianna Bucsi; Gabriella Linc
Archive | 2014
Klaudia Kruppa; Éva Szakács; Márta Lángné Molnár
Archive | 2009
Márta Lángné Molnár; Éva Szakács; István Molnár; Klaudia Kruppa; Adél Sepsi; András Cseh; Sándor Dulai; Nikolett Réka Aranyi; Borbála Hoffmann