Klaudyna Borewicz
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaudyna Borewicz.
Veterinary Microbiology | 2011
Hyeun Bum Kim; Klaudyna Borewicz; Bryan A. White; Randall S. Singer; Srinand Sreevatsan; Zheng Jin Tu; Richard E. Isaacson
The importance of bacteria in the gastrointestinal tracts of animals is widely acknowledged as important. However, very little is known about composition and distribution of the microbial population in lower intestinal tracts of animals. Because most bacterial species in pig intestines have not been cultured, it has been difficult to analyze bacterial diversity by conventional culture methods. Even with the development of culture independent 16S rRNA gene sequencing, the previous methods were slow and labor intensive. Therefore, high throughput pyrosequencing of 16S rDNA libraries was used in this study in order to explore the bacterial diversity of the pig feces. In our two trials, fecal samples from individual pigs were collected five times at 3-week intervals, and the 16S rRNA genes in the community DNAs from fecal samples were sequenced and analyzed. This longitudinal study design identified that microbial populations in the feces of the each pig continued to change as pigs aged. The variations of bacterial diversity of the animals were affected by less abundant bacterial components of the feces. These results help us to understand the age-related bacterial diversity in the commercial pig feces.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hyeun Bum Kim; Klaudyna Borewicz; Bryan A. White; Randall S. Singer; Srinand Sreevatsan; Zheng Jin Tu; Richard E. Isaacson
Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production.
Fems Microbiology Letters | 2013
Klaudyna Borewicz; Alexa A. Pragman; Hyeun Bum Kim; Marshall I. Hertz; Christine H. Wendt; Richard E. Isaacson
Lung transplant recipients experience poor long-term survival, largely due to chronic rejection. The pathogenesis of chronic rejection is incompletely understood, but bacterial colonization of the lung is associated with chronic rejection, while antibiotic use slows its progression. The lung harbors a bacterial community, termed the microbiome, which is present both in health and disease. We hypothesize that the lung microbiome will change following transplantation, and these changes may correspond to the development of rejection. Twelve bronchoalveolar lavage fluid (BALF) samples were obtained from four patients at three time points after transplantation, and two BALF samples were obtained from healthy, nontransplant controls. The microbiome of each sample was determined by pyrosequencing the 16S rRNA gene hypervariable 3 region. The data were analyzed using mothur, Ribosomal Database Project Classifier, Fast UniFrac, and Metastats. Transplanted lungs contained more bacterial sequences and demonstrated more microbial diversity than did control lungs. Bacteria in the phyla Proteobacteria (class Betaproteobacteria) predominated in the transplant samples. In contrast, the microbiome of the healthy lung consisted of the phyla Proteobacteria (class Gammaproteobacteria) and Firmicutes. The microbiome of the transplanted lung is vastly different from that of healthy lungs, mainly due to the presence of the family Burkholderiaceae in transplant samples.
Molecular Nutrition & Food Research | 2016
Lingmin Tian; Jan Scholte; Klaudyna Borewicz; Bartholomeus van den Bogert; Hauke Smidt; Anton J.W. Scheurink; Harry Gruppen; Henk A. Schols
SCOPE We aimed to investigate and compare the effects of four types of pectins on dietary fiber (DF) fermentation, microbiota composition, and short chain fatty acid (SCFA) production throughout the large intestine in rats. METHODS AND RESULTS Male Wistar rats were given diets supplemented with or without 3% structurally different pectins for 7 weeks. Different fermentation patterns of pectins and different location of fermentation of pectin and diet arabinoxylans (AXs) in the large intestine were observed. During cecal fermentation, sugar beet pectin significantly stimulated Lactobacillus (p < 0.01) and Lachnospiraceae (p < 0.05). The stimulating effects of sugar beet pectin on these two groups of microbes are stronger than both other pectins. In the cecum, low-methyl esterified citrus pectin and complex soy pectin increased (p < 0.05) the production of total SCFAs, propionate and butyrate, whereas high-methyl esterified pectin and sugar beet pectin did not. The fermentation patterns of cereal AXs in the cecum were significantly different upon supplementation of different pectins. These differences, however, became smaller in the colon due to an enhanced fermentation of the remaining DFs. CONCLUSION Dietary supplementation of pectin is a potential strategy to modulate the location of fermentation of DFs, and consequently microbiota composition and SCFA production for health-promoting effects.
PLOS ONE | 2015
Klaudyna Borewicz; Hyeun Bum Kim; Randall S. Singer; Connie J. Gebhart; Srinand Sreevatsan; Timothy J. Johnson; Richard E. Isaacson
Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally.
Applied and Environmental Microbiology | 2015
Timothy J. Johnson; Randall S. Singer; Richard E. Isaacson; Jessica L. Danzeisen; Kevin S. Lang; Kristi Kobluk; Bernadette Rivet; Klaudyna Borewicz; Jonathan G. Frye; Mark D. Englen; Janet M. Anderson; Peter R. Davies
ABSTRACT IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.
Molecular Nutrition & Food Research | 2017
Lingmin Tian; Geert Bruggeman; Marco van den Berg; Klaudyna Borewicz; Anton J.W. Scheurink; E.M.A.M. Bruininx; Paul de Vos; Hauke Smidt; Henk A. Schols; Harry Gruppen
SCOPE We aimed to investigate the effects of three different soluble pectins on the digestion of other consumed carbohydrates, and the consequent alterations of microbiota composition and SCFA levels in the intestine of pigs. METHODS AND RESULTS Piglets were fed a low-methyl esterified pectin enriched diet (LMP), a high-methyl esterified pectin enriched diet (HMP), a hydrothermal treated soybean meal enriched diet (aSBM) or a control diet (CONT). LMP significantly decreased the ileal digestibility of starch resulting in more starch fermentation in the proximal colon. In the ileum, low-methyl esterified pectin present was more efficiently fermented by the microbiota than high-methyl esterified pectin present which was mainly fermented by the microbiota in the proximal colon. Treated soybean meal was mainly fermented in the proximal colon and shifted the fermentation of cereal dietary fiber to more distal parts, resulting in high SCFA levels in the mid colon. LMP, HMP, and aSBM decreased the relative abundance of the genus Lactobacillus and increased that of Prevotella in the colon. CONCLUSION The LMP, HMP, and aSBM, differently affected the digestion processes compared to the control diet and shaped the colonic microbiota from a Lactobacillus-dominating flora to a Prevotella-dominating community, with potential health-promoting effects.
PLOS ONE | 2012
Sheila K. Patterson; Klaudyna Borewicz; Timothy J. Johnson; Wayne Xu; Richard E. Isaacson
Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10−4 per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10−6 per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non-adhesive to the adhesive phenotype.
PLOS ONE | 2014
Elise A. Lamont; Ping Wang; Shinichiro Enomoto; Klaudyna Borewicz; Ahmed Abdallah; Richard E. Isaacson; Srinand Sreevatsan
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1–106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
American Journal of Veterinary Research | 2014
Hyeun Bum Kim; Randall S. Singer; Klaudyna Borewicz; Bryan A. White; Srinand Sreevatsan; Timothy J. Johnson; L. A. Espejo; Richard E. Isaacson
OBJECTIVE To evaluate the effects of tylosin on C-reactive protein concentration, carriage of Salmonella enterica, and antimicrobial resistance genes in commercial pigs. ANIMALS 120 pigs on 2 commercial farms. PROCEDURES A cohort of sixty 10-week-old pigs in 4 pens/farm (15 pigs/pen) was randomly selected. Equal numbers of pigs were given feed containing tylosin (40 μg/g of feed) for 0, 6, or 12 weeks. C-reactive protein concentrations were measured, microbial culture for S enterica in feces was performed, and antimicrobial resistance genes in feces were quantified. RESULTS No significant associations were detected between C-reactive protein concentration or S enterica status and tylosin treatment. During the 12 weeks of tylosin administration, increased levels of 6 antimicrobial resistance genes did not occur. CONCLUSIONS AND CLINICAL RELEVANCE Treatment of pigs with tylosin did not affect C-reactive protein concentration or reduce carriage or load of S enterica. There was no evidence that pigs receiving tylosin had increased carriage of the 6 antimicrobial resistance genes measured. IMPACT FOR HUMAN MEDICINE S enterica is a public health concern. Use of the antimicrobial growth promoter tylosin did not pose a public health risk by means of increased carriage of S enterica.