Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Beyer is active.

Publication


Featured researches published by Klaus Beyer.


The EMBO Journal | 2010

Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1

Frits Kamp; Nicole Exner; Anne Kathrin Lutz; Nora Wender; Jan Hegermann; Bettina Brunner; Brigitte Nuscher; Tim Bartels; Armin Giese; Klaus Beyer; Stefan Eimer; Konstanze F. Winklhofer; Christian Haass

Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinsons disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.


Journal of Biological Chemistry | 2004

α-Synuclein Has a High Affinity for Packing Defects in a Bilayer Membrane A THERMODYNAMICS STUDY

Brigitte Nuscher; Frits Kamp; Thomas Mehnert; Sabine Odoy; Christian Haass; Philipp J. Kahle; Klaus Beyer

A number of neurodegenerative disorders, including Parkinsons disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the intracellular deposition of fibrillar aggregates that contain a high proportion of α-synuclein (αS). The interaction with the membrane-water interface strongly modulates folding and aggregation of the protein. The present study investigates the lipid binding and the coil-helix transition of αS, using titration calorimetry, differential scanning calorimetry, and circular dichroism spectroscopy. Titration of the protein with small unilamellar vesicles composed of zwitterionic phospholipids below the chain melting temperature of the lipids yielded exceptionally large exothermic heat values. The sigmoidal titration curves were evaluated in terms of a simple model that assumes saturable binding sites at the vesicle surface. The cumulative heat release and the ellipticity were linearly correlated as a result of simultaneous binding and helix folding. There was no heat release and folding of αS in the presence of large unilamellar vesicles, indicating that a small radius of curvature is necessary for the αS-membrane interaction. The heat release and the negative heat capacity of the protein-vesicle interaction could not be attributed to the coil-helix transition of the protein alone. We speculate that binding and helix folding of αS depends on the presence of defect structures in the membrane-water interface, which in turn results in lipid ordering in the highly curved vesicular membranes. This will be discussed with regard to a possible role of the protein for the stabilization of synaptic vesicle membranes.


Biophysical Journal | 2004

Membrane Model for the G-Protein-Coupled Receptor Rhodopsin: Hydrophobic Interface and Dynamical Structure

Thomas Huber; Ana Vitória Botelho; Klaus Beyer; Michael F. Brown

Rhodopsin is the only member of the pharmacologically important superfamily of G-protein-coupled receptors with a known structure at atomic resolution. A molecular dynamics model of rhodopsin in a POPC phospholipid bilayer was simulated for 15 ns, revealing a conformation significantly different from the recent crystal structures. The structure of the bilayer compared with a protein-free POPC control indicated hydrophobic matching with the nonpolar interface of the receptor, in agreement with deuterium NMR experiments. A new generalized molecular surface method, based on a three-dimensional Voronoi cell construction for atoms with different radii, was developed to quantify cross-sectional area profiles for the protein, lipid acyl chains and headgroups, and water. Thus, it was possible to investigate the bilayer deformation due to curvature of the individual lipid monolayers. Moreover, the generalized molecular surface derived hydrophobic interface allowed benchmarking of the hydropathy sequence analysis, an important structural genomics tool. Five water molecules diffused into internal hydration sites during the simulation, yielding a total of 12 internal waters. The cytoplasmic loops and the C-terminal tail, containing the G-protein recognition and protein sorting sequences, exhibited a high mobility, in marked contrast to the extracellular and transmembrane domains. The proposed functional coupling of the highly conserved ERY motif to the lipid-water interface via the cytoplasmic loops provides insight into lipid effects on G-protein-coupled receptor activation in terms of a flexible surface model, involving the spontaneous monolayer curvature.


Biophysical Journal | 2002

A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems.

Wen Guo; Volker Kurze; Thomas Huber; Nezam H. Afdhal; Klaus Beyer; James A. Hamilton

We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.


Journal of Biological Chemistry | 2006

Binding of α-Synuclein Affects the Lipid Packing in Bilayers of Small Vesicles

Frits Kamp; Klaus Beyer

The intracellular deposition of fibrillar aggregates of α-synuclein is a characteristic feature of Parkinson disease. Alternatively, as a result of its unusual conformational plasticity, α-synuclein may fold into an amphipathic helix upon contact with a lipid-water interface. Using spin label ESR and fluorescence spectroscopy, we show here that α-synuclein affects the lipid packing in small unilamellar vesicles. The ESR hyperfine splittings of spin-labeled phospholipid probes revealed that α-synuclein induces chain ordering at carbon 14 of the acyl chains below the chain melting phase transition temperature but not in the liquid crystalline state of electroneutral vesicle membranes. Binding of α-synuclein leads to an increase in the temperature and cooperativity of the phase transition according to the fluorescence anisotropy of the hydrophobic polyene 1,6-diphenylhexatriene and of the fluorescence emission maxima of the amphiphilic probe 6-dodecanoyl-2-dimethylaminonaphthalene. Binding parameters were obtained from the fluorescence anisotropy measurements in combination with our previous determinations by titration calorimetry (Nuscher, B., Kamp, F., Mehnert, T., Odoy, S., Haass, C., Kahle, P. J., and Beyer, K. (2004) J. Biol. Chem. 279, 21966–21975). We also show that α-synuclein interacts with vesicle membranes containing sphingomyelin and cholesterol. We propose that the protein is capable of annealing defects in curved vesicle membranes, which may prevent synaptic vesicles from premature fusion.


Cell Biochemistry and Biophysics | 2007

Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane

Klaus Beyer

A key feature in Parkinson’s disease is the deposition of Lewy bodies. The major protein component of these intracellular deposits is the 140-amino acid protein α-synuclein that is widely distributed throughout the brain. α-synuclein was identified in presynaptic terminals and in synaptosomal preparations. The protein is remarkable for its structural variability. It is almost unstructured as a monomer in aqueous solution. Self-aggregation leads to a variety of β-structures, while membrane association may result in the formation of an amphipathic helical structure. The present article strives to give an overview of what is currently known on the interaction of α-synuclein with lipid membranes, including synthetic lipid bilayers, membraneous cell fractions, synaptic vesicles and intact cells. Manifestations of a functional relevance of the α-synuclein–lipid interaction will be discussed and the potential pathogenicity of oligomeric α-synuclein aggregates will be briefly reviewed.


Journal of the American Chemical Society | 2008

Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy

Tim Bartels; Ravi S. Lankalapalli; Robert Bittman; Klaus Beyer; Michael F. Brown

Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.


Journal of Colloid and Interface Science | 1982

Phase structures, water binding, and molecular dynamics in liquid crystalline and frozen states of the system Triton X-100-D2O: A deuteron and carbon NMR study

Klaus Beyer

Abstract The phase diagram of the system Triton X-100-deuterium oxide was constructed with the aid of deuterium nuclear magnetic resonance. Two liquid crystalline phases were detected. Oriented samples of these mesophases exhibited spectra consistent with cylindrical and lamellar structures, in agreement with the common features of middle neat phases, respectively. The hydration of Triton X-100 by D2O was studied over a wide temperature and concentration range. The solvent binding capacity of the polyoxyethylene moiety of this detergent was determined by the method of nonfreezable water. The molar ratios D2O/Triton were almost independent of the Triton concentration after freezing of the bulk solvent. On the other hand, the amount of nonfreezable water decreased considerably with temperature. This behavior was interpreted in terms of transference of water molecules to the ice phase. Comparison of 2H-NMR relaxation times and 13C-NMR line widths in the liquid crystalline states of the Triton-water system suggested that the mobility of the Triton molecule is most restricted at the hydrophilic-hydrophobic interface. The mobility gradient was found to persist at low temperatures when the bulk solvent is frozen. Fourier transform 2H-NMR spectra revealed that macroscopic freezing of micellar and hexagonal (middle phase) samples obviously causes a rearrangement of the detergent molecules. A lamellar phase structure adopted by Triton in the ice could explain these observations.


Biological Chemistry | 2001

Protective activity of aromatic amines and imines against oxidative nerve cell death.

Bernd Moosmann; Thomas Skutella; Klaus Beyer; Christian Behl

Abstract Oxidative stress is a widespread phenomenon in the pathology of neurodegenerative diseases such as Alzheimers disease, Parkinsons disease, and amyotrophic lateral sclerosis. Neuronal cell death due to oxidative stress may causally contribute to the pathogeneses of these diseases. Therefore, neuroprotective antioxidants are considered to be a promising approach to slow down disease progression. We have investigated different aromatic amine and imine compounds for neuroprotective antioxidant functions in cell culture, and found that these compounds possess excellent cytoprotective potential in diverse paradigms of oxidative neuronal cell death, including clonal cell lines, primary cerebellar neurons, and organotypic hippocampal slice cultures. Aromatic amines and imines are effective against oxidative glutamate toxicity, glutathione depletion, and hydrogen peroxide toxicity. Their mode of action as direct antioxidants was experimentally confirmed by electron spin resonance spectroscopy, cellfree brain lipid peroxidation assays, and intracellular peroxide measurements. With halfmaximal effective concentrations of 2075 nM in different neuroprotection experiments, the aromatic imines phenothiazine, phenoxazine, and iminostilbene proved to be about two orders of magnitude more effective than common phenolic antioxidants. This remarkable efficacy could be directly correlated to calculated properties of the compounds by means of a novel, quantitative structureactivity relationship model. We conclude that bridged bisarylimines with a single free NHbond, such as iminostilbene, are superior neuroprotective antioxidants, and may be promising lead structures for rational drug development.


Biophysical Journal | 1995

Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry

Dörte Otten; L. Löbbecke; Klaus Beyer

The perturbation of phospholipid bilayer membranes by a nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), was investigated by 2H- and 31P-NMR, static and dynamic light scattering, and differential scanning calorimetry. Preequilibrated mixtures of the saturated phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphorylcholine (DLPC) with the detergent were studied over a broad temperature range including the temperature of the main thermotropic phase transition of the pure phospholipids. Above this temperature, at a phospholipid/detergent molar ratio 2:1, the membranes were oriented in the magnetic field. Cooling of the mixtures below the thermotropic phase transition temperatures of the pure phospholipids led to micelle formation. In mixtures of DPPC and DMPC with C12E8, a narrow calorimetric signal at the onset temperature of the solubilization suggested that micelle formation was related to the disorder-order transition in the phospholipid acyl chains. The particle size changed from 150 nm to approximately 7 nm over the temperature range of the bilayer-micelle transition. The spontaneous orientation of the membranes at high temperatures enabled the direct determination of segmental order parameters from the deuterium spectra. The order parameter profiles of the phospholipid acyl chains could be attributed to slow fluctuations of the whole membrane and to detergent-induced local perturbations of the bilayer order. The packing constraints in the mixed bilayers that eventually lead to bilayer solubilization were reflected by the order parameters of the interfacial phospholipid acyl chain segments and of the phospholipid headgroup. These results are interpreted in terms of the changing average shape of the component molecules. Considering the decreasing cross sectional areas in the acyl chain region and the increasing hydration of the detergent headgroups, the bilayer-micelle transition is the result of an imbalance in the chain and headgroup repulsion. A neutral or pivotal plane can be defined on the basis of the temperature dependence of the interfacial quadrupolar splittings.

Collaboration


Dive into the Klaus Beyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Huber

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Bartels

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp J. Kahle

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Zhang

University of Arizona

View shared research outputs
Researchain Logo
Decentralizing Knowledge