Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Eder is active.

Publication


Featured researches published by Klaus Eder.


European Journal of Nutrition | 2012

Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency

Robert Ringseis; Janine Keller; Klaus Eder

BackgroundAlthough carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation.MethodsThe present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis.ResultsCarnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity.ConclusionsIn view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.


Acta Veterinaria Scandinavica | 2013

Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs

Denise K. Gessner; Anja Fiesel; Erika Most; Jennifer Dinges; Gaiping Wen; Robert Ringseis; Klaus Eder

BackgroundIn pigs, enteric infections and the development of gut disorders such as diarrhoea are commonly observed, particularly after weaning. The present study investigated the hypothesis that feeding a grape seed and grape marc extract (GSGME) as a dietary supplement has the potential to suppress the inflammatory process in the small intestine of pigs by modulating the activities of NF-κB and Nrf2 due to its high content of flavonoids.MethodsTwenty-four crossbred, 6 weeks old pigs were randomly assigned to 2 groups of 12 animals each and fed nutritionally adequate diets without or with 1% GSGME for 4 weeks.ResultsPigs administered GSGME had a lower transactivation of NF-κB and Nrf2 and a lower expression of various target genes of these transcription factors in the duodenal mucosa than control pigs (P < 0.05). Concentrations of α-tocopherol and thiobarbituric acid reactive substances (TBARS) in liver and plasma and total antioxidant capacity of plasma and relative mRNA abundances of NF-κB and Nrf2 target genes in the liver did not differ between the two groups. However, the ratio of villus height:crypt depth and the gain:feed ratio was higher in the pigs fed GSGME than in control pigs (P < 0.05).ConclusionsThis study shows that dietary supplementation of a polyphenol rich GSGME suppresses the activity of NF-κB in the duodenal mucosa of pigs and thus might provide a useful dietary strategy to inhibit inflammation in the gut frequently occurring in pigs. Feeding GSGME did not influence vitamin E status and the antioxidant system of the pigs but improved the gain:feed ratio. In overall, the study suggests that polyphenol-rich plant extracts such GSGME could be useful feed supplements in pig nutrition, in order to maintain animal health and improve performance.


Animal | 2012

Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets.

Janine Keller; Robert Ringseis; A. Koc; I. Lukas; Holger Kluge; Klaus Eder

Supplementation of carnitine has been shown to improve performance characteristics such as protein accretion in growing pigs. The molecular mechanisms underlying this phenomenon are largely unknown. Based on recent results from DNA microchip analysis, we hypothesized that carnitine supplementation leads to a downregulation of genes of the ubiquitin proteasome system (UPS). The UPS is the most important system for protein breakdown in tissues, which in turn could be an explanation for increased protein accretion. To test this hypothesis, we fed sixteen male, four-week-old piglets either a control diet or the same diet supplemented with carnitine and determined the expression of several genes involved in the UPS in the liver and skeletal muscle. To further determine whether the effects of carnitine on the expression of genes of the UPS are mediated directly or indirectly, we also investigated the effect of carnitine on the expression of genes of the UPS in cultured C2C12 myotubes and HepG2 liver cells. In the liver of piglets fed the carnitine-supplemented diet, the relative mRNA levels of atrogin-1, E214k and Psma1 were lower than in those of the control piglets (P < 0.05). In skeletal muscle, the relative mRNA levels of atrogin-1, MuRF1, E214k, Psma1 and ubiquitin were lower in piglets fed the carnitine-supplemented diet than that in control piglets (P < 0.05). Incubating C2C12 myotubes and HepG2 liver cells with increasing concentrations of carnitine had no effect on basal and/or hydrocortisone-stimulated mRNA levels of genes of the UPS. In conclusion, this study shows that dietary carnitine decreases the transcript levels of several genes involved in the UPS in skeletal muscle and liver of piglets, whereas carnitine has no effect on the transcript levels of these genes in cultivated HepG2 liver cells and C2C12 myotubes. These data suggest that the inhibitory effect of carnitine on the expression of genes of the UPS is mediated indirectly, probably via modulating the release of inhibitors of the UPS such as IGF-1. The inhibitory effect of carnitine on the expression of genes of the UPS might explain, at least partially, the increased protein accretion in piglets supplemented with carnitine.


BMC Veterinary Research | 2014

Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs

Anja Fiesel; Denise K. Gessner; Erika Most; Klaus Eder

BackgroundFeeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs.ResultsPigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P < 0.10 for GSGME, P < 0.05 for SH). Villus height:crypt depth ratio in duodenum and jejunum as well as apparent total tract digestibility of nutrients were unchanged in the groups receiving GSGME or SH in comparison to the control group. However, the groups receiving GSGME or SH revealed an increased faecal pH value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P < 0.05). Moreover, both treatment groups had a lower expression of various pro-inflammatory genes in duodenum, ileum and colon than the control group (P < 0.05).ConclusionThe present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.


BMC Veterinary Research | 2012

Expression of genes involved in hepatic carnitine synthesis and uptake in dairy cows in the transition period and at different stages of lactation

G. Schlegel; Janine Keller; Frank Hirche; Stefanie Geißler; F. J. Schwarz; Robert Ringseis; Gabriele I. Stangl; Klaus Eder

BackgroundIn rodents and pigs, it has shown that carnitine synthesis and uptake of carnitine into cells are regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Dairy cows are typically in a negative energy balance during early lactation. We investigated the hypothesis that genes of carnitine synthesis and uptake in dairy cows are enhanced during early lactation.ResultsmRNA abundances of PPARA and some of its classical target genes and genes involved in carnitine biosynthesis [trimethyllysine dioxygenase (TMLHE), 4-N-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1), γ-butyrobetaine dioxygenase (BBOX1)] and uptake of carnitine [novel organic cation transporter 2 (SLC22A5)] as well as carnitine concentrations in liver biopsy samples of 20 dairy cows in late pregnancy (3 wk prepartum) and early lactation (1 wk, 5 wk, 14 wk postpartum) were determined. From 3 wk prepartum to 1 wk postpartum, mRNA abundances of PPARΑ and several PPARΑ target genes involved in fatty acid uptake, fatty acid oxidation and ketogenesis in the liver were strongly increased. Simultaneously, mRNA abundances of enzymes of carnitine synthesis (TMLHE: 10-fold; ALDH9A1: 6-fold; BBOX1: 1.8-fold) and carnitine uptake (SLC22A5: 13-fold) and the concentration of carnitine in the liver were increased from 3 wk prepartum to 1 wk postpartum (P < 0.05). From 1 wk to 5 and 14 wk postpartum, mRNA abundances of these genes and hepatic carnitine concentrations were declining (P < 0.05). There were moreover positive correlations between plasma concentrations of non-esterified fatty acids (NEFA) and hepatic carnitine concentrations at 1 wk, 5 wk and 14 wk postpartum (P < 0.05).ConclusionsThe results of this study show for the first time that the expression of hepatic genes of carnitine synthesis and cellular uptake of carnitine is enhanced in dairy cows during early lactation. These changes might provide an explanation for increased hepatic carnitine concentrations observed in 1 wk postpartum and might be regarded as a physiologic means to provide liver cells with sufficient carnitine required for transport of excessive amounts of NEFA during a negative energy balance.


Journal of Dairy Science | 2013

Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation

Denise K. Gessner; G. Schlegel; Janine Keller; F. J. Schwarz; Robert Ringseis; Klaus Eder

In the liver of dairy cows, the production of cytokines is enhanced during the periparturient phase, which in turn leads to inflammation and an impairment of hepatic function. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that controls the transcription of genes encoding various antioxidative and cytoprotective proteins. In the present study, we investigated the hypothesis that Nrf2 is activated in the liver of dairy cows during the periparturient phase to protect the liver against the deleterious effects of cytokines and reactive oxygen species. Therefore, we determined relative mRNA abundances of TNF (encoding tumor necrosis factor-α), various acute phase proteins and several Nrf2 target genes in liver biopsy samples of 20 dairy cows at each time point from 3 wk antepartum to 1, 5, and 14 wk postpartum. We observed an increase in mRNA abundances of TNF and acute-phase proteins [serum amyloid A 3 (SAA3), haptoglobin (HP), and C-reactive protein (CRP)] from 3 wk antepartum to 1 wk postpartum, indicative of a proinflammatory condition. Messenger RNA abundances of various Nrf2 target genes with antioxidative or cytoprotective functions [glutathione peroxidase 3 (GPX3); microsomal glutathione S-transferase 3 (MGST3); superoxide dismutase (SOD1); catalase (CAT); metallothioneins 1A, 1E, and 2A (MT1A, MT1E, and MT2A, respectively); NAD(P)H dehydrogenase, quinone 1 (NQO1); heme oxygenase 2 (HMOX2); and UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1)] were also greatly increased from 3 wk antepartum to 1 wk postpartum. From 1 wk postpartum to later lactation, mRNA abundances of all the Nrf2-target genes considered declined but remained at levels that were higher than those in 3 wk antepartum. No correlations were found, however, between plasma concentrations of nonesterified fatty acids or β-hydroxybutyrate and mRNA abundances of Nrf2 target genes, indicating that a negative energy balance might not have been the main factor responsible for upregulation of those genes in the liver during early lactation. In conclusion, this study provides additional evidence that the periparturient phase in dairy cows is associated with a proinflammatory condition in the liver. Moreover, it is shown for the first time that the transition from pregnancy to lactation leads to a strong upregulation of Nrf2 target genes with antioxidative or cytoprotective properties, which might be another physiologic means to prevent the liver against damage by the inflammation process and an increased generation of reactive oxygen species.


Molecular Nutrition & Food Research | 2011

Regulation of genes involved in lipid metabolism by dietary oxidized fat.

Robert Ringseis; Klaus Eder

Although oxidized fats are widely considered to have detrimental effects on human health, a large number of feeding studies with experimental animals have consistently demonstrated that oxidized fats, compared with fresh fats, cause a reduction in the concentrations of triacylglycerols and cholesterol in liver and plasma. The reason for these effects became clear when recently it was shown that thermo-oxidized fats contain characteristic substances such as hydroxylated fatty acids and cyclic fatty acid monomers which are potent ligands and activators of peroxisome proliferator-activated receptor α - a transcription factor controlling genes involved in fatty acid and lipoprotein metabolism. In addition, oxidized fats have also been reported to inhibit expression of genes involved in fatty acid synthesis and cholesterol homeostasis. These effects are mediated by inhibiting the maturation of sterol regulatory-element binding proteins, which are transcription factors regulating genes involved in fatty acid synthesis and cholesterol homeostasis. This review summarizes the phenotypical alterations of lipid metabolism observed in feeding studies dealing with oxidized fats and addresses the molecular mechanisms underlying these lipid metabolism alterations, in particular the lipid lowering effects of dietary oxidized fats.


BMC Veterinary Research | 2014

Up-regulation of endoplasmic reticulum stress induced genes of the unfolded protein response in the liver of periparturient dairy cows.

Denise K. Gessner; G. Schlegel; Robert Ringseis; F. J. Schwarz; Klaus Eder

BackgroundIn dairy cows, the periparturient phase is a stressful period, which is commonly associated with strong metabolic adaptations and the development of pathophysiologic conditions and disorders. Some of the symptoms occurring in the liver, such as the development of fatty liver, are similar to those observed under the condition of endoplasmic reticulum (ER) stress. Therefore, we hypothesized, that in the liver of dairy cows ER stress is induced during the periparturient phase, which in turn leads to an induction of the unfolded protein response (UPR). In order to investigate this hypothesis, we determined relative mRNA concentrations of 14 genes of the ER stress-induced UPR in liver biopsy samples of 13 dairy cows at 3 wk antepartum and 1, 5 and 14 wk postpartum.ResultsWe found, that the mRNA concentrations of 13 out of the 14 genes involved in the UPR in the liver were significantly increased (1.9 to 4.0 fold) at 1 wk postpartum compared to 3 wk antepartum. From 1 wk postpartum to later lactation, mRNA concentrations of all the genes considered were declining. Moreover, at 1 wk postpartum, mRNA concentration of the spliced variant of XBP1 was increased in comparison to 3 wk antepartum, indicating that splicing of XBP1 – a hallmark of ER stress - was induced following the onset of lactation.ConclusionThe present study reveals, that ER stress might be induced during the periparturient phase in the liver of dairy cows. We assume that the ER stress-induced UPR might contribute to the pathophysiologic conditions commonly observed in the liver of periparturient cows, such as the development of fatty liver, ketosis or inflammation.


Journal of Animal Physiology and Animal Nutrition | 2012

Inhibition of the pro‐inflammatory NF‐κB pathway by a grape seed and grape marc meal extract in intestinal epithelial cells

Denise K. Gessner; Robert Ringseis; M. Siebers; Janine Keller; J. Kloster; Gaiping Wen; Klaus Eder

In pigs and other monogastric animal, the weaning phase is commonly accompanied by an increased susceptibility to gut disorders such as diarrhoea owing to the induction of an inflammatory process in the intestine during weaning. Given the unfavourable effects of intestinal inflammation on feed consumption, digestive capacity of the intestine and growth of animals, controlling intestinal inflammation is a reasonable approach for the maintenance of performance characteristics of livestock animals. Therefore, this study aimed to study the anti-inflammatory potential of a commercial polyphenol-rich grape seed (GS) and grape marc (GM) meal-based feed additive in a well-established in vitro intestinal epithelium model (polarized Caco-2 cells). The anti-inflammatory potential was evaluated by studying the effect of an ethanolic extract obtained from the GS and GM meal-based feed additive (GSGME) on the pro-inflammatory transcription factor NF-κB, which is considered to play a key role in the induction of weaning-associated intestinal inflammation. The highest non-cytotoxic concentrations of the ethanolic GSGME dose dependently reduced TNFα-induced NF-κB transactivation and decreased TNFα-induced mRNA levels of the NF-κB target genes IL-1β, IL-8, MCP-1 and CXCL1 in Caco-2 intestinal cells (p < 0.05). No effect of the ethanolic GSGME was observed on the cytoprotective Nrf2 pathway in Caco-2 cells as evidenced by an unaltered Nrf2 transactivation and unchanged mRNA levels of Nrf2 target genes, such as GPX-2, NQO1, CYP1A1 and UGT1A1. In conclusion, this study shows that an ethanolic GSGME exerts anti-inflammatory effects in intestinal cells under in vitro conditions. Thus, polyphenol-rich GSGM meal-based feed additives may be useful for the inhibition or prevention of inflammatory processes in the intestine of livestock animals, in particular during states with inappropriate NF-κB activation in the intestinal tissue, such as the weaning phase. Future studies are warranted to prove the in vivo anti-inflammatory potential of GSGM meal-based feed additives.


Molecular Nutrition & Food Research | 2011

Regular endurance exercise improves the diminished hepatic carnitine status in mice fed a high-fat diet

Robert Ringseis; Frank-Christoph Mooren; Janine Keller; Aline Couturier; Gaiping Wen; Frank Hirche; Gabriele I. Stangl; Klaus Eder; Karsten Krüger

SCOPE Metabolic stress induced by chronic high-fat (HF) diet feeding or genetically induced diabetes impairs carnitine status. Herein, we tested the hypothesis that regular endurance exercise (EE) improves the HF diet-induced impairment of carnitine status through stimulating the expression of hepatic genes involved in carnitine synthesis and uptake. METHODS AND RESULTS Eighteen male C57BL/6 mice were assigned to three groups: group S received a standard diet, group HF received a HF diet, and group HF+EE received an HF diet and was regularly exercised on a treadmill. After 10 wk, mice of the HF and the HF+EE groups were highly obese and insulin resistant compared with mice of the S group (p<0.05), but mice of the HF+EE group were less insulin resistant than those of the HF group (p<0.05). The HF group had lower carnitine concentrations and mRNA and protein levels of genes involved in carnitine synthesis and uptake in the liver than the S group (p<0.05), whereas these parameters did not differ between the S group and the HF+EE group. CONCLUSION These findings indicate that regular EE reverses an HF diet-induced impairment of hepatic carnitine content by stimulating hepatic carnitine synthesis and uptake.

Collaboration


Dive into the Klaus Eder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Koch

University of Applied Sciences Bingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge