Klaus Franzreb
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Franzreb.
European Journal of Mass Spectrometry | 2009
Jiri Fiser; Klaus Franzreb; Jan Lorincik; Peter Williams
A variety of oxygen-containing diatomic dications XO2+ can be produced in the gas phase by prolonged high-current 16O− ion surface bombardment (oxygen ion beam sputtering) of a wide range of sample materials. These gas-phase species were detected by mass spectrometry at half-integer m/z values for ion flight times of the order of ∼10−5 s. Examples provided here include ion mass spectra of AsO2+, GaO2+, SbO2+, AgO2+, CrO2+ and BeO2+. A detailed theoretical study of the diatomic dication system BeO2+ is also presented.
Journal of Chemical Physics | 2004
Klaus Franzreb; J. Hrušák; M. E. Alikhani; Jan Lorincik; Richard C. Sobers; Peter Williams
Three gas-phase diatomic trications Se(2) (3+), Te(2) (3+), and LaF(3+) have been produced by Ar(+) ion beam sputtering of Se, Te, and LaF(3) surfaces, respectively. These exotic molecular ions were detected at noninteger m/z values in a magnetic sector mass spectrometer for ion flight times of >/=13 micros that correspond to lower limits of their respective lifetimes. Se(2) (3+) and Te(2) (3+) were unambiguously identified by their characteristic isotopic abundances. Ab initio calculations of the electronic structures of Se(2) (3+), Te(2) (3+), and LaF(3+) show that these molecular trications are metastable with respect to dissociation into fragment ions of Se(2+)+Se(+), Te(2+)+Te(+), and La(2+)+F(+), respectively. Their barrier heights are about 0.49, 0.29, and 0.53 eV, and the equilibrium internuclear distances (bond lengths) are about 0.23, 0.27, and 0.26 nm, respectively. The gas-phase diatomic dications Se(2) (2+) and Te(2) (2+) were also observed and unambiguously identified. They were found to be long-lived metastable molecules as well, whereas LaF(2+) is thermochemically stable.
Physical Chemistry Chemical Physics | 2011
Tiago Vinicius Alves; Willian Hermoso; Klaus Franzreb; Fernando R. Ornellas
Sputtering (ion surface bombardment) of various calcium-containing powder samples with an energetic (17 keV), high-current (16)O(-) beam has produced the diatomic dications of CaSi(2+), CaP(2+), CaF(2+), CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+). These molecular gas-phase species have been identified in positive ion mass spectra at half-integer m/z values; their ion flight times through a magnetic-sector mass spectrometer were roughly 10(-5) s. Most of them appear to be novel molecular ions; the stability of the latter four (CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+)) had been demonstrated in previous theoretical studies, whereas only CaF(2+) and CaBr(2+) had been observed before. Here we combine the results of our experimental search with a detailed theoretical study of the remaining three systems CaSi(2+), CaP(2+) and CaF(2+). All electronic states correlating with the first dissociation channel are characterized using high level ab initio electronic structure calculations. In their ground states, we find CaSi(2+) to be a long-lived metastable molecule, whereas CaF(2+) and CaP(2+) are thermodynamically stable, with respective equilibrium internuclear distances of 6.253, 4.740, and 5.731 a(0). CaSi(2+) has a well depth of 7116 (0.88) cm(-1) (eV) and a dissociation asymptote 7956 (0.99) cm(-1) (eV) below the ground state minimum. The dissociation energy of CaF(2+) is estimated to be 3404 (0.42) cm(-1) (eV), whereas for CaP(2+) we found 2547 (0.32) cm(-1) (eV), and a barrier height of 8118 (1.01) cm(-1) (eV). Their adiabatic double ionisation energies are 22.87, 16.91, and 17.32 eV, respectively, for the F, Si, and P containing dications.
Journal of Chemical Physics | 2009
Klaus Franzreb; Reinaldo Pis Diez; J. A. Alonso
Five homonuclear diatomic dications Zr(2)(2+), Cd(2)(2+), Hf(2)(2+), W(2)(2+), and Pt(2)(2+) have been observed in the gas phase by mass spectrometry. These exotic doubly positively charged molecules were produced indirectly in the ion extraction region of a secondary ion mass spectrometer during sputtering of zirconium, cadmium, hafnium, tungsten, and platinum metal foils, respectively, by energetic high-current Ar(+) ion surface bombardment. They were detected in positive ion mass spectra at half-integer mz values for ion flight times of the order of approximately 10(-5) s. To our knowledge, these species had not been observed before. This experimental work confirms two theoretical investigations that had predicted that W(2)(2+) and Cd(2)(2+) are long-lived metastable species in the gas phase, but contradicts two theoretical studies that had suggested that Pt(2)(2+) should be unstable with respect to fragmentation. Therefore an advanced theoretical investigation of the ground state of Pt(2)(2+) was also performed. Our calculation shows that the ground state of Pt(2)(2+) is metastable with an internuclear equilibrium distance of 2.36 A, a dissociation energy (with respect to the top of the barrier) of 2.32 eV, and an ionization potential of Pt(2)(+) of about 15.8 eV. The latter theoretical result strongly suggests that Pt(2)(2+) dication formation in our experiment may have taken place via the resonant electron transfer process Pt(2)(+) + Ar(+) --> Pt(2)(2+) + Ar.
Journal of Chemical Physics | 2005
Klaus Franzreb; Peter Williams
We have extended our previous experiment [Schauer et al., Phys. Rev. Lett. 65, 625 (1990)] where we had produced small gas-phase dianion clusters of C(n) (2-)(n > or =7) by means of sputtering a graphite surface by Cs(+) ion bombardment. Our detection sensitivity for small C(n) (2-) could now be increased by a factor of about 50 for odd n. Nevertheless, a search for the elusive pentamer dianion of C(5) (2-) was not successful. As an upper limit, the sputtered flux of C(5) (2-) must be at least a factor of 5000 lower than that of C(7) (2-), provided that the lifetime of C(5) (2-) is sufficiently long to allow its detection by mass spectrometry. When oxygen gas (flooding with either O(2) or with N(2)O) was supplied to the Cs(+)-bombarded graphite surface, small dianions of OC(n) (2-)(5< or =n < or =14) and O(2)C(7) (2-) were observed in addition to C(n) (2-)(n > or =7). Similarly, Cs(+) sputtering of graphite with simultaneous SF(6) gas flooding produced SC(n) (2-)(6< or =n< or =18). Mixed nitrogen-carbon or fluorine-carbon dianion clusters could not be observed by these means. Attempts to detect mixed metal-fluoride dianions for SF(6) gas flooding of various Cs(+)-bombarded metal surfaces were successful for the case of Zr, where metastable ZrF(6) (2-) was observed. Cs(+) bombardment of a silicon carbide (SiC) wafer produced SiC(n) (2-) (n=6,8,10). When oxygen gas was supplied to the Cs(+)-bombarded SiC surface, small dianions of SiOC(n) (2-) (n=4,6,8) and of SiO(2)C(n) (2-) (n=4,6) as well as a heavier unidentified dianion (at mz=98.5) were observed. For toluene (C(7)H(8)) vapor flooding of a Cs(+)-bombarded graphite surface, several hydrocarbon dianion clusters of C(n)H(m) (2-)(n> or =7) were produced in addition to C(n) (2-)(n> or =7), while smaller C(n)H(m) (2-) with n< or =6 could not be observed. BeC(n) (2-) (n=4,6,8,10), Be(2)C(6) (2-), as well as BeC(8)H(m) (2-) (with m=2 and/or m=1) were observed for toluene vapor flooding of a Cs(+)-bombarded beryllium metal foil. The metastable pentamer (9)Be(12)C(4) (2-) at mz=28.5 was the smallest and lightest dianion molecule that we could detect. The small dianion clusters of SC(n) (2-), OC(n) (2-), BeC(n) (2-), and SiO(m)C(n) (2-) (m=0,1,2) have different abundance patterns. A resemblance exists between the abundance patterns of BeC(n) (2-) and SiC(n) (2-), even though calculated molecular structures of BeC(6) (2-) and SiC(6) (2-) are different. The abundance pattern of SC(n) (2-) is fairly similar to that of C(n) (2-).
Rapid Communications in Mass Spectrometry | 2014
Jitao Zhang; Klaus Franzreb; Peter Williams
RATIONALE Imaging mass spectrometry can allow the correlation of molecular identification and spatial organization in biological samples. A useful technique would rapidly generate, from untreated samples, images of lipids, peptides and small proteins with intracellular spatial resolution. We describe the use of massive, highly charged glycerol cluster impact to produce images using ionized, intact biomolecules, with few-micrometer lateral resolution and few-minute acquisition times. METHODS An electrospray primary ion source generating massive clusters of electrolyte-doped glycerol was coupled with a microscope-imaging time-of-flight secondary ion mass spectrometer. A continuous stream of primary cluster ions ejected secondary ions from the sample surface. The secondary ion stream was pulsed in the secondary column and either time-of-flight mass spectra or mass-selected ion images were projected onto a position-sensitive ion detector. The image acquisition times were a few minutes. RESULTS Ionized intact molecules of some common lipids, peptides and small proteins have been detected. A lateral image resolution of ~3 µm has been measured for a bradykinin ion image. CONCLUSIONS Massive cluster impact (MCI) combined with microscope-mode ion imaging allows rapid imaging using ionized intact biomolecules, with a lateral resolution acceptable for applications with biological samples.
Journal of Chemical Physics | 2004
Klaus Franzreb; Richard C. Sobers; Jan Lorincik; Peter Williams
Long-lived metastable doubly positively charged diatomic ions of Mo2(2+) have been produced by Ar+ bombardment of a molybdenum metal surface. These exotic molecular dications, such as for example 92,95Mo2(2+) at m/z 93.5, could be observed in positive ion mass spectra for ion flight times of approximately 17 micros in a Cameca IMS-3f secondary ion mass spectrometer, when the ion extraction field was adjusted for detection of ions that are formed in the gas phase several micrometers in front of the sputtered surface. Mo2(2+) was observed at high primary current densities for projectile ions of Ar+, but could not be detected under very similar bombarding conditions for projectile ions of Xe+. Such a dependence of ion production by inert gas sputtering on the primary ion species [ionization energies: IP1(Ar) = 15.76 eV and IP1(Xe) = 12.13 eV] is unusual. It is shown that formation of Mo2(2+) dications takes place by resonant charge transfer in grazing gas-phase collisions between incoming projectile ions of Ar+ and sputtered molecular ions of Mo2+. The efficiency for such a resonant electron capture (Mo2+ + Ar+ --> Mo2(2+) + Ar) is of the order of 10(-5) for the bombarding conditions in our mass spectrometer and corresponds to a cross section of a few 10(-15) cm2.
Analytical Chemistry | 2015
Jitao Zhang; Klaus Franzreb; Sergei Aksyonov; Peter Williams
Impacts of massive, highly charged glycerol clusters (≳10(6) Da, ≳ ± 100 charges) have been used to eject intact charged molecules of peptides, lipids, and small proteins from pure solid samples, enabling imaging using these ion species in a time-of-flight secondary ion microscope with few-micrometer spatial resolution. Here, we report mass spectra and useful ion yields (ratio of intact charged molecules detected to molecules sputtered) for several molecular species-two peptides, bradykinin and angiotensin II; two lipids, phosphatidylcholine and sphingomyelin; Irganox 1010 (a detergent); insulin; and rhodamine B-and show that useful ion yields are high enough to enable bioimaging of peptides and lipids in biological samples with few-micrometer resolution and acceptable signals. For example, several hundred molecular ion counts should be detectable from a 3 × 3 μm(2) area of a pure lipid bilayer given appropriate instrumentation or tens of counts from a minor constituent of such a layer.
Journal of Chemical Physics | 2012
Ana Paula de Lima Batista; José Carlos Barreto de Lima; Klaus Franzreb; Fernando R. Ornellas
We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF(2+), SnCl(2+), and SnO(2+) using ab initio computer calculations. The ground states of SnF(2+), SnCl(2+), and SnO(2+) are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF(2+) dissociates into Sn(2+) + F, the long range behaviour of the potential energy curves of SnCl(2+) and SnO(2+) is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T(e)) to form SnF(2+), SnCl(2+), and SnO(2+) from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO(2+) and SnF(2+) have been observed for prolonged oxygen ((16)O(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF(2)) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl(2+) has been detected for (16)O(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl(2)) powder. To our knowledge, SnF(2+) is a novel gas-phase molecule, whereas SnCl(2+) had been detected previously by electron-impact ionization mass spectrometry, and SnO(2+) had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems.
Journal of Chemical Physics | 2011
Reinaldo Pis Diez; Klaus Franzreb; J. A. Alonso
In the present combined experimental and theoretical study we report the observation of the novel gas-phase dication CuZn(2+) and provide some theoretical insight into the electronic binding of this exotic metastable molecule and its formation mechanism. Using mass spectrometry we have detected four isotopomer signals of CuZn(2+) at half-integer m/z values for ion flight times of about 14 μs. CuZn(2+) was unambiguously identified by its isotopic abundance. High-current energetic Ar(+) ion bombardment of a brass surface was used for its production. Subsequent dication formation was found to take place in the ion extraction region of our mass spectrometer several tens of microns in front of the sputtered brass surface. The dication formation mechanism appears to be resonant electron transfer in soft gas-phase collisions between sputter-ejected singly charged CuZn(+) molecular ions and incoming Ar(+) projectiles. This conclusion is supported by our theoretical study that obtained an ionization energy of CuZn(+) of 15.75 eV, in excellent agreement with both the experimental and calculated ionization energy of Ar (15.76 and 15.67 eV, respectively). The ground state of CuZn(2+) is found to be a metastable one with a very shallow potential well at an internuclear equilibrium distance of about 2.7 Å the dissociation energy being very difficult to estimate. Interestingly, spin-orbit corrections are found to be necessary to get an adequate description of the metastable state of CuZn(2+), whereas relativistic corrections have no effects on neutral CuZn nor on CuZn(+).