Klaus Hartung
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Hartung.
EMBO Reports | 2001
Georg Nagel; Tanjef Szellas; John R. Riordan; Thomas Friedrich; Klaus Hartung
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC‐mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR‐mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.
The Journal of Physiology | 2005
Georg Nagel; P. Barbry; H. Chabot; E. Brochiero; Klaus Hartung; Ryszard Grygorczyk
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP‐activated, nucleotide‐dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The absence of CFTR‐dependent ENaC inhibition and the resulting sodium hyperabsorption were postulated to be a major electrolyte transport abnormality in cystic fibrosis (CF)‐affected epithelia. Several ex vivo studies, including those that used the Xenopus oocyte expression system, have reported ENaC inhibition by activated CFTR, but contradictory results have also been obtained. Because CFTR–ENaC interactions have important implications in the pathogenesis of CF, the present investigation was undertaken by our three independent laboratories to resolve whether CFTR regulates ENaC in oocytes and to clarify potential sources of previously reported dissimilar observations. Using different experimental protocols and a wide range of channel expression levels, we found no evidence that activated CFTR regulates ENaC when oocyte membrane potential was carefully clamped. We determined that an apparent CFTR‐dependent ENaC inhibition could be observed when resistance in series with the oocyte membrane was not low enough or the feedback voltage gain was not high enough. We suggest that the inhibitory effect of CFTR on ENaC reported in some earlier oocyte studies could be attributed to problems arising from high levels of channel expression and suboptimal recording conditions, that is, large series resistance and/or insufficient feedback voltage gain.
Biochimica et Biophysica Acta | 1991
Dieter Langosch; Klaus Hartung; Ernst Grell; Ernst Bamberg; Heinrich Betz
The inhibitory glycine receptor (GlyR) of rat spinal cord contains an intrinsic transmembrane channel mediating agonist-gated anion flux. Here, synthetic peptides modelled after the predicted transmembrane domains M2 and M4 of its ligand-binding subunit were incorporated into lipid vesicle membranes and black lipid bilayers to analyze their channel forming capabilities. Both types of peptides prohibited the establishment of, or dissipated, preexisting transmembrane potentials in the vesicle system. Incorporation of peptide M2 into the black lipid bilayer elicited randomly gated single channel events with various conductance states and life-times. Peptide M4 increased the conductance of the bilayer without producing single channels. Exchange of the terminal arginine residues of peptide M2 by glutamate resulted in a significant shift towards cation selectivity of the respective channels as compared to peptide M2. In conclusion, the peptide channels observed differed significantly from native GlyR in both conductivity and ion-selectivity indicating that individual synthetic transmembrane segments are not sufficient to mimic a channel protein composed of subunits with multiple transmembrane segments.
Pflügers Archiv: European Journal of Physiology | 1985
Klaus Hartung
Abstract1. In voltage-clamped “motor-giant” neurones of the crayfishOrconectes limosus a depolarizing voltage step clicits a transient inward current carried by Na+ which is followed by an early and a delayed outward current. 2. The early outward current is reduced if the Na+ current is suppressed by tetrodotoxin or the removal of external Na+. It is also abolished if the K+ channel blocking agents tetraethylammonium and 3,4-diaminopyridine are applied to the neurone. 3. The outward current was not depressed if Li+ was substituted for Na+ in the external solution or if the Na−K pump was inhibited by ouabain or the removal of external K+. 4. Ionophoretic injections of EGTA did not depress the early outward current. 5. Short ionophoretic injections of Na+ into the neurone increased the outward current elicited by a depolarization but did not affect the leakage current. 6. It is suggested that the influx of Na+ leads to a transient increment of the Na+ concentration near K+ channels and that internal Na+ ions exert an activating or modulating effect on K+ channels.
Biophysical Journal | 1996
Michael Kappl; Klaus Hartung
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.
FEBS Letters | 2000
G.A. Sauer; Georg Nagel; H. Koepsell; Ernst Bamberg; Klaus Hartung
Properties of the cytoplasmic binding sites of the rabbit Na+/glucose cotransporter, SGLT1, expressed in Xenopus oocytes were investigated using the giant excised patch clamp technique. Voltage and substrate dependence of the outward cotransport were studied using α‐methyl D‐glucopyranoside (αMDG) as a substrate. The apparent affinity for αMDG depends on the cytoplasmic Na+ concentration and voltage. At 0 mV the K M for αMDG is 7 mM at 110 mM Na+ and 31 mM at 10 mM Na+. The apparent affinity for αMDG and Na+ is voltage dependent and increases at positive potentials. At 0 mV holding potential the outward current is half‐maximal at about 70 mM. The results show that SGLT1 can mediate sugar transport out of the cell under appropriate concentration and voltage conditions, but under physiological conditions this transport is highly improbable due to the low affinity for sugar.
Journal of Biological Chemistry | 2006
Robert E. Dempski; Klaus Hartung; Thomas Friedrich; Ernst Bamberg
The Na+/K+-ATPase maintains the physiological Na+ and K+ gradients across the plasma membrane in most animal cells. The functional unit of the ion pump is comprised of two mandatory subunits including the α-subunit, which mediates ATP hydrolysis and ion translocation, as well as the β-subunit, which acts as a chaperone to promote proper membrane insertion and trafficking in the plasma membrane. To examine the conformational dynamics between the α- and β-subunits of the Na+/K+-ATPase during ion transport, we have used fluorescence resonance energy transfer, under voltage clamp conditions on Xenopus laevis oocytes, to differentiate between two models that have been proposed for the relative orientation of the α- and β-subunits. These experiments were performed by measuring the time constant of irreversible donor fluorophore destruction with fluorescein-5-maleimide as the donor fluorophore and in the presence or absence of tetramethylrhodamine-6-maleimide as the acceptor fluorophore following labeling on the M3-M4 or M5-M6 loop of the α-subunit and the β-subunit. We have also used fluorescence resonance energy transfer to investigate the relative movement between the two subunits as the ion pump shuttles between the two main conformational states (E1 and E2) as described by the Albers-Post scheme. The results from this study have identified a model for the orientation of the β-subunit in relation to the α-subunit and suggest that the α- and β-subunits move toward each other during the E2 to E1 conformational transition.
Biochimica et Biophysica Acta | 1986
Ulrike Müller; Dieter Malchow; Klaus Hartung
Single ion channels with different conductances and gating characteristics were observed in the plasma membrane of the slime mold Dictyostelium discoideum by means of the patch-clamp technique in the cell-attached mode. The predominant channel type shows outward current flow, probably carried by K+ ions. The slope conductance of this channel is 9 pS and its probability to be open increases with depolarization of the membrane. The channel is observed from 1 to 8 h after the beginning of starvation.
Pflügers Archiv: European Journal of Physiology | 1985
Klaus Hartung; Werner Rathmayer
Abstract1. The effects of three toxins (ATX I, II, III) isolated from the sea anemoneAnemonia sulcata were studied in the soma membrane of a crustacean neurone under voltage-clamp conditions. 2. All three toxins affected the action potentials and the Na+ currents in a similar manner. The lowest concentrations tested (10 nM, 20 nM and 50 nM for AtX I, II and III, respectively) had pronounced selective effects on the Na+ current. No effect on K+ or Ca2+ currents was observed with concentrations up to 5 μM. 3. In the presence of ATX the Na+ inactivation was incomplete even with pulses of 700 ms length or strong depolarizing prepulses. 4. Besides the effects on the inactivation process ATX affected also the activation of the Na+ current. 5. In cells treated with ATX the negative resistance branch of the peak Na+ current voltage relation was shifted by −5 mV to −20 mV. 6. The time to peak was increased for small depolarizations (up to −30 mV) and the rate of rise (ΔI/Δt) was enlarged by ATX. A slow activating current component was also observed after depolarizing prepulses or if the Na+ current was outward. 7. The decay of the Na+ tail currents was considerably prolonged after the application of ATX if the membrane was repolarized to potentials more positive than about −60 mV. 8. Repetitive stimulation led to a shortening of the action potential in ATX II treated neurones. A simultaneous and parallel decrement of the peak and plateau current was observed with depolarizing voltage steps.
Biophysical Journal | 1997
Klaus Hartung; J.P. Froehlich; Klaus Fendler
Time-resolved measurements of currents generated by Ca-ATPase from fragmented sarcoplasmic reticulum (SR) are described. SR vesicles spontaneously adsorb to a black lipid membrane acting as a capacitive electrode. Charge translocation by the enzyme is initiated by an ATP concentration jump performed by the light-induced conversion of an inactive precursor (caged ATP) to ATP with a time constant of 2.0 ms at pH 6.2 and 24 degrees C. The shape of the current signal is triphasic, an initial current flow into the vesicle lumen is followed by an outward current and a second slow inward current. The time course of the current signal can be described by five relaxation rate constants, lambda1 to lambda5 plus a fixed delay D approximately 1-3 ms. The electrical signal shows that 1) the reaction cycle of the Ca-ATPase contains two electrogenic steps; 2) positive charge is moved toward the luminal side in the first rapid step and toward the cytoplasmic side in the second slow step; 3) at least one electroneutral reaction precedes the electrogenic steps. Relaxation rate constant lambda3 reflects ATP binding, with lambda(3,max) approximately 100 s(-1). This step is electroneutral. Comparison with the kinetics of the reaction cycle shows that the first electrogenic step (inward current) occurs before the decay of E2P. Candidates are the formation of phosphoenzyme from E1ATP (lambda2 approximately 200 s[-1]) and the E1P --> E2P transition (D approximately 1 ms or lambda1 approximately 300 s[-1]). The second electrogenic transition (outward current) follows the formation of E2P (lambda4 approximately 3 s[-1]) and is tentatively assigned to H+ countertransport after the dissociation of Ca2+. Quenched flow experiments performed under the conditions of the electrical measurements 1) demonstrate competition by caged ATP for ATP-dependent phosphoenzyme formation and 2) yield a rate constant for phosphoenzyme formation of 200 s(-1). These results indicate that ATP and caged ATP compete for the substrate binding site, as suggested by the ATP dependence of lambda3 and favor correlation of lambda2 with phosphoenzyme formation.