Klaus Holzmann
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Holzmann.
Molecular Cancer Therapeutics | 2008
Hendrik Fischer; Ninon Taylor; Sigrid Allerstorfer; Michael Grusch; Gudrun Sonvilla; Klaus Holzmann; Ulrike Setinek; Leonilla Elbling; Heidelinde Cantonati; Bettina Grasl-Kraupp; Christine Gauglhofer; Brigitte Marian; Michael Micksche; Walter Berger
Fibroblast growth factors (FGF) and their high-affinity receptors (FGFR) represent an extensive cellular growth and survival system. Aim of this study was to evaluate the contribution of FGF/FGFR-mediated signals to the malignant growth of non-small cell lung cancer (NSCLC) and to assess their potential as targets for therapeutic interventions. Multiple FGFR mRNA splice variants were coexpressed in NSCLC cells (n = 16) with predominance of FGFR1. Accordingly, both expression of a dominant-negative FGFR1 (dnFGFR1) IIIc-green fluorescent protein fusion protein and application of FGFR small-molecule inhibitors (SU5402 and PD166866) significantly reduced growth, survival, clonogenicity, and migratory potential of the majority of NSCLC cell lines. Moreover, dnFGFR1 expression completely blocked or at least significantly attenuated s.c. tumor formation of NSCLC cells in severe combined immunodeficient mice. Xenograft tumors expressing dnFGFR1 exhibited significantly reduced size and mitosis rate, enhanced cell death, and decreased tissue invasion. When FGFR inhibitors were combined with chemotherapy, antagonistic to synergistic in vitro anticancer activities were obtained depending on the application schedule. In contrast, simultaneous blockage of FGFR- and epidermal growth factor receptor-mediated signals exerted synergistic effects. In summary, FGFR-mediated signals in cooperation with those transmitted by epidermal growth factor receptor are involved in growth and survival of human NSCLC cells and should be considered as targets for combined therapeutic approaches. [Mol Cancer Ther 2008;7(10):3408–19]
Journal of Cell Science | 2006
Elisabeth Steiner; Klaus Holzmann; Christine Pirker; Leonilla Elbling; Michael Micksche; Hedwig Sutterlüty; Walter Berger
The major vault protein (MVP) is the main component of vaults, large ribonucleoprotein particles implicated in the regulation of cellular signaling cascades and multidrug resistance. Here, we identify MVP as an interferon γ (IFN-γ)-inducible protein. Treatment with IFN-γ resulted in a significant upregulation of MVP promoter activity as well as mRNA and protein levels. Activation of MVP expression by IFN-γ involved transcriptional upregulation through the JAK/STAT pathway based on an interaction of STAT1 with an interferon-γ-activated site (GAS) within the proximal MVP promoter. Mutation of this site distinctly reduced basal as well as IFN-γ-stimulated MVP transcription. IFN-γ also significantly enhanced the translation rate of MVP. Ectopic MVP overexpression in the MVP-negative lung cancer cell model H65 led to a downregulation of three known IFN-γ-regulated genes, namely ICAM-1, CD13 and CD36. Additionally, presence of MVP in H65 cells blocked both basal and IFN-γ-induced ICAM-1 expression whereas downmodulation of endogenous MVP levels by shRNA enhanced IFN-γ-induced ICAM-1 expression in U373 glioblastoma cells. MVP-mediated IFN-γ insensitivity was accompanied by significantly reduced STAT1 phosphorylation at Y701 and diminished translocation of STAT1 into the nucleus. Summarizing, we identify MVP as an IFN-γ-responsive gene interfering with IFN-γ-activated JAK/STAT signals. These data further substantiate that the vault particle functions as a general interaction platform for cellular signaling cascades.
Journal of Investigative Dermatology | 2011
Thomas Metzner; Alexandra Bedeir; Gerlinde Held; Barbara Peter-Vörösmarty; Sara Ghassemi; Christine Heinzle; Sabine Spiegl-Kreinecker; Brigitte Marian; Klaus Holzmann; Bettina Grasl-Kraupp; Christine Pirker; Michael Micksche; Walter Berger; Petra Heffeter; Michael Grusch
Cutaneous melanoma is a tumor with rising incidence and a very poor prognosis at the disseminated stage. Melanomas are characterized by frequent mutations in BRAF and also by overexpression of fibroblast growth factor 2 (FGF2), offering opportunities for therapeutic intervention. We investigated inhibition of FGF signaling and its combination with dacarbazine or BRAF inhibitors as an antitumor strategy in melanoma. The majority of melanoma cell lines displayed overexpression of FGF2 but also FGF5 and FGF18 together with different isoforms of FGF receptors (FGFRs) 1-4. Blockade of FGF signals with dominant-negative receptor constructs (dnFGFR1, 3, or 4) or small-molecule inhibitors (SU5402 and PD166866) reduced melanoma cell proliferation, colony formation, as well as anchorage-independent growth, and increased apoptosis. DnFGFR constructs also significantly inhibited tumor growth in vivo. Combination of FGF inhibitors with dacarbazine showed additive or antagonistic effects, whereas synergistic drug interaction was observed when combining FGFR inhibition with the multikinase/BRAF inhibitor sorafenib or the V600E mutant-specific BRAF inhibitor RG7204. In conclusion, FGFR inhibition has antitumor effects against melanoma cells in vitro and in vivo. Combination with BRAF inhibition offers a potential for synergistic antimelanoma effects and represents a promising therapeutic strategy against advanced melanoma.
British Journal of Cancer | 2010
Gudrun Sonvilla; Sigrid Allerstorfer; Christine Heinzle; Stefan Stättner; Josef Karner; Martin Klimpfinger; Fritz Wrba; Hendrik Fischer; Christine Gauglhofer; Sabine Spiegl-Kreinecker; Bettina Grasl-Kraupp; Klaus Holzmann; Michael Grusch; Walter Berger; Brigitte Marian
Background:Deregulation of fibroblast growth factor receptor 3 (FGFR3) is involved in several malignancies. Its role in colorectal cancer has not been assessed before.Methods:Expression of FGFR3 in human colorectal tumour specimens was analysed using splice variant-specific real-time reverse transcriptase PCR assays. To analyse the impact of FGFR3-IIIc expression on tumour cell biology, colon cancer cell models overexpressing wild-type (WT-3b and WT3c) or dominant-negative FGFR3 variants (KD3c and KD3b) were generated by either plasmid transfection or adenoviral transduction.Results:Although FGFR3 mRNA expression is downregulated in colorectal cancer, alterations mainly affected the FGFR3-IIIb splice variant, resulting in an increased IIIc/IIIb ratio predominantly in a subgroup of advanced tumours. Overexpression of WT3c increased proliferation, survival and colony formation in all colon cancer cell models tested, whereas WT3b had little activity. In addition, it conferred sensitivity to autocrine FGF18-mediated growth and migration signals in SW480 cells with low endogenous FGFR3-IIIc expression. Disruption of FGFR3-IIIc-dependent signalling by dominant-negative FGFR3-IIIc or small interfering RNA-mediated FGFR3-IIIc knockdown resulted in inhibition of cell growth and induction of apoptosis, which could not be observed when FGFR3-IIIb was blocked. In addition, KD3c expression blocked colony formation and migration and distinctly attenuated tumour growth in SCID mouse xenograft models.Conclusion:Our data show that FGFR3-IIIc exerts oncogenic functions by mediating FGF18 effects in colorectal cancer and may constitute a promising new target for therapeutic interventions.
Journal of Nucleic Acids | 2012
Klaus Holzmann; Thomas W. Grunt; Christine Heinzle; Sandra Sampl; Heinrich Steinhoff; Nicole Reichmann; Miriam Kleiter; Marlene L. Hauck; Brigitte Marian
Alternative splicing of the IgIII loop of fibroblast growth factor receptors (FGFRs) 1–3 produces b- and c-variants of the receptors with distinctly different biological impact based on their distinct ligand-binding spectrum. Tissue-specific expression of these splice variants regulates interactions in embryonic development, tissue maintenance and repair, and cancer. Alterations in FGFR2 splicing are involved in epithelial mesenchymal transition that produces invasive, metastatic features during tumor progression. Recent research has elucidated regulatory factors that determine the splice choice both on the level of exogenous signaling events and on the RNA-protein interaction level. Moreover, methodology has been developed that will enable the in depth analysis of splicing events during tumorigenesis and provide further insight on the role of FGFR 1–3 IIIb and IIIc in the pathophysiology of various malignancies. This paper aims to summarize expression patterns in various tumor types and outlines possibilities for further analysis and application.
Carcinogenesis | 2011
Philipp Hofer; Andreas Baierl; Elisabeth Feik; Gerhard Führlinger; Gernot Leeb; Karl Mach; Klaus Holzmann; Michael Micksche; Andrea Gsur
Telomerase reactivation and expression of human telomerase gene [human telomerase reverse transcriptase (hTERT)] are hallmarks of unlimited proliferation potential of cancer cells. A polymorphic tandem repeats minisatellite of hTERT gene, termed MNS16A was reported to influence hTERT expression. To assess the role of MNS16A as potential biomarker for colorectal cancer (CRC), we investigated for the first time the association of MNS16A genotypes with risk of colorectal polyps and CRC. In the ongoing colorectal cancer study of Austria (CORSA), 3842 Caucasian participants were recruited within a large screening project in the province Burgenland including 90 CRC cases, 308 high-risk polyps, 1022 low-risk polyps and 1822 polyp free controls verified by colonoscopy. MNS16A genotypes were determined by polymerase chain reaction from genomic DNA. Associations of MNS16A genotypes with CRC risk were estimated by logistic regression analysis computing odds ratios (ORs) and 95% confidence intervals (CIs). We identified five different variable number of tandem repeats (VNTRs) of MNS16A including VNTR-364, a newly discovered rare variant. VNTR-274 allele was associated with a 2.7-fold significantly increased risk of CRC compared with the VNTR-302 wild-type (OR = 2.69; 95% CI = 1.11-6.50; P = 0.028). In our CORSA study, the medium length VNTR-274 was identified as risk factor for CRC. Although, this population-based study herewith reports the largest cohort size concerning MNS16A thus far, further large-scale studies in diverse populations are warranted to confirm hTERT MNS16A genotype as potential biomarker for assessment of CRC risk.
Cancer Research | 2012
Christine Heinzle; Andrea Gsur; Monika Hunjadi; Zeynep Erdem; Christine Gauglhofer; Stefan Stättner; Josef Karner; Martin Klimpfinger; Friedrich Wrba; Andrea Réti; Balazs Hegedus; Andreas Baierl; Bettina Grasl-Kraupp; Klaus Holzmann; Michael Grusch; Walter Berger; Brigitte Marian
A gly(388)arg polymorphism (rs351855) in the transmembrane domain of the fibroblast growth factor receptor (FGFR4) is associated with increased risk, staging, and metastasis in several different types of cancer. To specifically assess the impact of the polymorphic FGFR4 in colorectal cancer (CRC), we engineered CRC cell lines with distinct endogenous expression patterns to overexpress either the FGFR4(gly) or FGFR4(arg) alleles. The biologic analyses revealed an oncogenic importance for both polymorphic alleles, but FGFR4(gly) was the stronger inducer of tumor growth, whereas FGFR4(arg) was the stronger inducer of migration. An evaluation of clinical specimens revealed that FGFR4 was upregulated in 20/71 patients independent of gly(388)arg status. There was no correlation between the presence of an FGFR4(arg) allele and CRC or polyp risk in 3,471 participants of the CORSA study. However, among 182 patients with CRC, FGFR4(arg)-carriers had a fivefold higher risk of tumors that were stage II or greater. Together, our results established that both allelic forms of FGFR4 exert an oncogenic impact and may serve equally well as therapeutic targets in CRC. One important implication of our findings is that FGFR4(arg)-carriers are at a higher risk for more aggressive tumors and therefore may profit from early detection measures.
Oncogene | 2016
Thomas Aschacher; Brigitte Wolf; Florian Enzmann; Philip Kienzl; Barbara Messner; Sandra Sampl; Martin Svoboda; Diana Mechtcheriakova; Klaus Holzmann; Michael Bergmann
A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.
American Journal of Respiratory and Critical Care Medicine | 2014
Karin Schelch; Mir Alireza Hoda; Thomas Klikovits; Julia Münzker; Bahil Ghanim; Christina Wagner; Tamás Garay; Viktoria Laszlo; Ulrike Setinek; Balazs Dome; Martin Filipits; Christine Pirker; Petra Heffeter; Edgar Selzer; József Tóvári; Szilvia Török; István Kenessey; Klaus Holzmann; Bettina Grasl-Kraupp; Brigitte Marian; Walter Klepetko; Walter Berger; Balazs Hegedus; Michael Grusch
RATIONALE Malignant pleural mesothelioma is an aggressive malignancy characterized by frequent resistance to chemo- and radiotherapy, poor outcome, and limited therapeutic options. Fibroblast growth factors (FGFs) and their receptors are potential targets for cancer therapy, but their significance in mesothelioma has remained largely undefined. OBJECTIVES To investigate the antimesothelioma potential of FGF receptor 1 (FGFR1) inhibition. METHODS Expression of FGFs and their receptors was analyzed in mesothelioma cell lines and tissue specimens. Several cell models were used to investigate FGFR1 inhibition in vitro and in combination with cisplatin and irradiation. Mouse intraperitoneal xenotransplant models were used for in vivo validation. MEASUREMENTS AND MAIN RESULTS FGFR1, FGF2, and FGF18 were overexpressed in mesothelioma. Stimulation with FGF2 led to increased cell proliferation, migration, and transition to a more sarcomatoid phenotype in subsets of mesothelioma cell lines. In contrast, inhibition of FGFR1 by a specific kinase inhibitor or a dominant-negative FGFR1 construct led to significantly decreased proliferation, clonogenicity, migration, spheroid formation, and G1 cell cycle arrest in several mesothelioma cell lines, accompanied by apoptosis induction and decreased mitogen-activated protein kinase pathway activity. Reduced tumor growth, proliferation, mitogenic signaling, and apoptosis induction were observed in vivo. Inhibition of FGFR1 synergistically enhanced the cytotoxic effects of ionizing radiation and cisplatin. CONCLUSIONS Our data suggest that the malignant phenotype of mesothelioma cells depends on intact FGF signals, which should be considered as therapeutic targets with a promising chemo- and radiosensitizing potential.
British Journal of Cancer | 2006
I Mauritz; S Westermayer; B Marian; N Erlach; Michael Grusch; Klaus Holzmann
Upregulation of cyclooxygenase-2 (COX-2) and prostaglandin-dependent vascularisation in small adenomatous polyps is an essential part of colon carcinogenesis. To study the underlying cellular mechanisms, LT97 and Caco2 human colorectal tumour cells not expressing endogenous COX-2 were exposed to 1 μM prostaglandin E2 (PGE2) in their medium. At 30 min after addition, expression of c-fos was stimulated 5-fold and 1.3-fold, respectively, depending on the activation of both extracellular signal-regulated kinase and p38. The amount of c-jun in nuclear extracts was increased 20% in LT97 cells. Expression of COX-2 was upregulated 1.7-fold in LT97 cells and 1.5-fold in Caco2 2 h after prostaglandin (PG) addition by a p38-mediated pathway. The known PGE2 target gene vascular endothelial growth factor (VEGF) was not modulated. Effects of sustained PGE2 production were studied in VACO235 cells that have high endogenous COX-2 and in LT97 cells infected with an adenovirus expressing COX-2. Prostaglandin E2 secretion into the medium was 1–2 nM and 250 pM, respectively. Expression of both VEGF and c-fos was high in VACO235 cells. In LT97 cells, COX-2 upregulated c-fos expression and c-jun content in nuclear extracts 1.7- and 1.2-fold, respectively, in a PG-dependent way. This shows that exogenous PGE2 as well as COX-2 overexpression affect signalling and gene expression in a way that enhances tumour progression.