Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Klumpp is active.

Publication


Featured researches published by Klaus Klumpp.


Journal of Biological Chemistry | 2006

The Novel Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication in Cell Culture

Klaus Klumpp; Vincent Leveque; Sophie Le Pogam; Han Ma; Wen-Rong Jiang; Hyunsoon Kang; Caroline Granycome; Margaret Singer; Carl Laxton; Julie Qi Hang; Keshab Sarma; David Bernard Smith; Dieter Heindl; Christopher John Hobbs; John Herbert Merrett; Julian A. Symons; Nick Cammack; Joseph Armstrong Martin; René Devos; Isabel Najera

Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4′-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC50 = 1.28 μm) with similar potency compared with 2′-C-methylcytidine (IC50 = 1.13 μm). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mm. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5′-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a Ki of 40 nm. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3′-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3′-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2′-C-MeATP and other 2′-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.


Journal of Virology | 2006

Selection and Characterization of Replicon Variants Dually Resistant to Thumb- and Palm-Binding Nonnucleoside Polymerase Inhibitors of the Hepatitis C Virus

Sophie Le Pogam; Hyunsoon Kang; Seth F. Harris; Vincent Leveque; Anthony M. Giannetti; Samir Ali; Wen-Rong Jiang; Sonal Rajyaguru; Gisele Tavares; Connie Oshiro; Than Hendricks; Klaus Klumpp; Julian A. Symons; Michelle F. Browner; Nick Cammack; Isabel Najera

ABSTRACT Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.


Antimicrobial Agents and Chemotherapy | 2008

Selected Replicon Variants with Low-Level In Vitro Resistance to the Hepatitis C Virus NS5B Polymerase Inhibitor PSI-6130 Lack Cross-Resistance with R1479

Samir Ali; Vincent Leveque; Sophie Le Pogam; Han Ma; Friederike Philipp; Nicole Inocencio; Mark A. Smith; Andre Alker; Hyunsoon Kang; Isabel Najera; Klaus Klumpp; Julian A. Symons; Nick Cammack; Wen-Rong Jiang

ABSTRACT PSI-6130 (β-d-2′-deoxy-2′-fluoro-2′-C-methylcytidine) is a selective inhibitor of hepatitis C virus (HCV) replication that targets the NS5B polymerase. R7128, the prodrug of PSI-6130, has shown antiviral efficacy in patients chronically infected with HCV genotype 1a (GT-1a) and GT-1b. We observed that the compound exhibited potent in vitro activity against laboratory-optimized HCV replicons as well as against a panel of replicons containing NS5B HCV polymerases derived from GT-1a and GT-1b clinical isolates. We used the HCV replicon cell system to examine the emergence of variants with reduced sensitivity to PSI-6130. Short-term treatment of cells harboring the HCV subgenomic replicon with PSI-6130 cleared the replicon without generating resistant variants. Long-term culture of the cells under the compound selection generated the S282T substitution in a complex pattern with other amino acid substitutions in the NS5B polymerase. The presence of the coselected substitutions did not increase the moderate three- to sixfold loss of sensitivity to PSI-6130 mediated by the S282T substitution; however, their presence enhanced the replication capacity compared to the replication levels seen with the S282T substitution alone. We also observed a lack of cross-resistance between PSI-6130 and R1479 and demonstrated that long-term culture selection with PSI-6130 in replicon cells harboring preexisting mutations resistant to R1479 (S96T/N142T) results in the emergence of the S282T substitution and the reversion of S96T to wild-type serine. In conclusion, PSI-6130 presents a high barrier to resistance selection in vitro, selects for variants exhibiting only low-level resistance, and lacks cross-resistance with R1479, supporting the continued development of the prodrug R7128 as a therapeutic agent for the treatment of HCV infection.


The Journal of Infectious Diseases | 2013

A Randomized, Double-Blind Placebo Controlled Trial of Balapiravir, a Polymerase Inhibitor, in Adult Dengue Patients

Nguyet Minh Nguyen; Chau Nguyen Bich Tran; Lam Khanh Phung; Kien Thi Hue Duong; Huy le Anh Huynh; Jeremy Farrar; Quyen Than Ha Nguyen; Hien Tinh Tran; Chau Van Vinh Nguyen; Laura Merson; Long Truong Hoang; Martin L. Hibberd; Pauline P. K. Aw; Andreas Wilm; Niranjan Nagarajan; Dung Thi Nguyen; Mai Phuong Pham; Truong Thanh Nguyen; Hassan Javanbakht; Klaus Klumpp; Janet Hammond; Rosemary Petric; Marcel Wolbers; Chinh Nguyen; Cameron P. Simmons

Background. Dengue is the most common arboviral infection of humans. There are currently no specific treatments for dengue. Balapiravir is a prodrug of a nucleoside analogue (called R1479) and an inhibitor of hepatitis C virus replication in vivo. Methods. We conducted in vitro experiments to determine the potency of balapiravir against dengue viruses and then an exploratory, dose-escalating, randomized placebo-controlled trial in adult male patients with dengue with <48 hours of fever. Results. The clinical and laboratory adverse event profile in patients receiving balapiravir at doses of 1500 mg (n = 10) or 3000 mg (n = 22) orally for 5 days was similar to that of patients receiving placebo (n = 32), indicating balapiravir was well tolerated. However, twice daily assessment of viremia and daily assessment of NS1 antigenemia indicated balapiravir did not measurably alter the kinetics of these virological markers, nor did it reduce the fever clearance time. The kinetics of plasma cytokine concentrations and the whole blood transcriptional profile were also not attenuated by balapiravir treatment. Conclusions. Although this trial, the first of its kind in dengue, does not support balapiravir as a candidate drug, it does establish a framework for antiviral treatment trials in dengue and provides the field with a clinically evaluated benchmark molecule. Clinical Trials Registration. NCT01096576.


Hepatology | 2008

Robust antiviral activity of R1626, a novel nucleoside analog: A randomized, placebo‐controlled study in patients with chronic hepatitis C

Stuart K. Roberts; Graham Cooksley; Gregory J. Dore; Richard Robson; David Shaw; Heather Berns; George Hill; Klaus Klumpp; Isabel Najera; Carla Washington

The nucleoside analog R1479 is a potent and highly selective inhibitor of nonstructural protein 5B–directed hepatitis C virus (HCV) replication in vitro. R1626, a tri‐isobutyl ester prodrug of R1479, was developed to increase bioavailability and improve antiviral activity. A multicenter, observer‐blinded, randomized, placebo‐controlled, multiple ascending dose, phase 1b study was designed to evaluate the safety, pharmacokinetics, and antiviral activity and to potentially identify the maximum tolerated dose of R1626 in patients with chronic hepatitis C. Forty‐seven treatment‐naïve patients infected with HCV genotype 1 were treated with R1626 orally at doses of 500 mg, 1500 mg, 3000 mg, or 4500 mg or placebo twice daily for 14 days with 14 days of follow‐up. Safety, tolerability, pharmacokinetics, and antiviral activity were assessed. Doses up to and including 3000 mg twice daily were well tolerated after 14 days of treatment. There was an increase in frequency of adverse events at the highest dose (4500 mg). Reversible mild to moderate hematological changes were observed with increasing doses. R1626 was efficiently converted to R1479, with dose‐proportional pharmacokinetics observed over the entire dose range. The pharmacokinetics of R1479 were linear over the dose range evaluated. Dose‐dependent and time‐dependent reductions in HCV RNA were observed. Mean decreases (median; range) in viral load after 14 days of treatment with doses of 500, 1500, 3000, and 4500 mg were 0.32 (0.22; 0.01‐0.71), 1.2 (0.8; 0.49‐2.46), 2.6 (2.7; 1.27‐3.93) and 3.7 (4.1; 2.15‐4.39) log10, respectively. No resistance to R1479 was observed after 14 days of treatment with R1626. Conclusion: These data support further studies of R1626 in combination with peginterferon alfa‐2a and ribavirin for the treatment of patients with chronic HCV infection. (HEPATOLOGY 2008.)


Journal of Biological Chemistry | 2005

Structure of the unphosphorylated STAT5a dimer

Dante Neculai; Ana Mirela Neculai; Sophie Verrier; Kenneth Straub; Klaus Klumpp; Edith Pfitzner; Stefan Becker

STAT proteins have the function of signaling from the cell membrane into the nucleus, where they regulate gene transcription. Latent mammalian STAT proteins can form dimers in the cytoplasm even before receptor-mediated activation by specific tyrosine phosphorylation. Here we describe the 3.21-Å crystal structure of an unphosphorylated STAT5a homodimer lacking the N-terminal domain as well as the C-terminal transactivation domain. The overall structure of this fragment is very similar to phosphorylated STATs. However, important differences exist in the dimerization mode. Although the interface between phosphorylated STATs is mediated by their Src-homology 2 domains, the unphosphorylated STAT5a fragment dimerizes in a completely different manner via interactions between their β-barrel and four-helix bundle domains. The STAT4 N-terminal domain dimer can be docked onto this STAT5a core fragment dimer based on shape and charge complementarities. The separation of the dimeric arrangement, taking place upon activation and nuclear translocation of STAT5a, is demonstrated by fluorescence resonance energy transfer experiments in living cells.


Journal of Biological Chemistry | 2007

Characterization of the Metabolic Activation of Hepatitis C Virus Nucleoside Inhibitor β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) and Identification of a Novel Active 5′-Triphosphate Species

Han Ma; Wen-Rong Jiang; Nicole Robledo; Vincent Leveque; Samir Ali; Teresa Lara-Jaime; Mohammad R. Masjedizadeh; David W. Smith; Nick Cammack; Klaus Klumpp; Julian A. Symons

β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5′-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5′-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5′-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 μm, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5′-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.


The Journal of Infectious Diseases | 2014

In Vivo Emergence of a Novel Mutant L159F/L320F in the NS5B Polymerase Confers Low-Level Resistance to the HCV Polymerase Inhibitors Mericitabine and Sofosbuvir

Xiao Tong; Sophie Le Pogam; Lewyn Li; Kristin Haines; Katherine Piso; Victoria Baronas; Jun-Mei Yan; Sung-Sau So; Klaus Klumpp; Isabel Najera

BACKGROUND Resistance to mericitabine (prodrug of HCV NS5B polymerase inhibitor PSI-6130) is rare and conferred by the NS5B S282T mutation. METHODS Serum HCV RNA from patients who experienced viral breakthrough, partial response, or nonresponse in 2 clinical trials in which patients received mericitabine plus peginterferon alfa-2a (40KD)/ribavirin were analyzed by population and clonal sequence analysis as well as phenotypic assay for assessment of in vivo mericitabine resistance. RESULTS Among 405 patients treated with mericitabine plus peginterferon alfa-2a/ribavirin in PROPEL and JUMP-C, virologic breakthrough or nonresponse were not observed; 12 patients experienced a partial response. The NS5B S282T resistance mutation was not observed in any patient. A number of treatment-associated NS5B changes were observed and characterized. A novel double mutant (L159F/L320F) with impaired replication capacity was detected in one HCV genotype 1b-infected patient. Introduction of double mutant L159F/L320F into genotype 1a (H77) and 1b (Con-1) replicons, respectively, increased the EC50 for mericitabine by 3.1- and 5.5-fold and the EC90 by 3.1- and 8.9-fold. The double mutant also decreased susceptibility to sofosbuvir (GS-7977) and GS-938 but not setrobuvir, relative to wild-type. CONCLUSIONS A novel and replication-deficient double mutation (L159F/L320F) confers low-level resistance to mericitabine and cross-resistance to both sofosbuvir and GS-938. CLINICAL TRIALS REGISTRATION NCT00869661, NCT01057667.


Journal of Biological Chemistry | 2008

2′-Deoxy-4′-azido Nucleoside Analogs Are Highly Potent Inhibitors of Hepatitis C Virus Replication Despite the Lack of 2′-α-Hydroxyl Groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Virology | 2011

The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein

Choongho Lee; Han Ma; Julie Qi Hang; Vincent Leveque; Ella H. Sklan; Menashe Elazar; Klaus Klumpp; Jeffrey S. Glenn

The hepatitis C virus (HCV) non-structural (NS) 5A protein plays an essential role in the replication of the viral RNA by the membrane-associated replication complex (RC). Recently, a putative NS5A inhibitor, BMS-790052, exhibited the highest potency of any known anti-HCV compound in inhibiting HCV replication in vitro and showed a promising clinical effect in HCV-infected patients. The precise mechanism of action for this new class of potential anti-HCV therapeutics, however, is still unclear. In order to gain further insight into its mode of action, we sought to test the hypothesis that the antiviral effect of BMS-790052 might be mediated by interfering with the functional assembly of the HCV RC. We observed that BMS-790052 indeed altered the subcellular localization and biochemical fractionation of NS5A. Taken together, our data suggest that NS5A inhibitors such as BMS-790052 can suppress viral genome replication by altering the proper localization of NS5A into functional RCs.

Collaboration


Dive into the Klaus Klumpp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge