Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Korn is active.

Publication


Featured researches published by Klaus Korn.


The Journal of Infectious Diseases | 2005

Prevalence of Drug-Resistant HIV-1 Variants in Untreated Individuals in Europe: Implications for Clinical Management

Annemarie M. J. Wensing; David A. M. C. van de Vijver; Gioacchino Angarano; Birgitta Åsjö; Claudia Balotta; Enzo Boeri; Ricardo Jorge Camacho; Maire-Laure Chaix; Dominique Costagliola; Andrea De Luca; Inge Derdelinckx; Zehava Grossman; Osamah Hamouda; Angelos Hatzakis; Robert Hemmer; Andy I. M. Hoepelman; Andrzej Horban; Klaus Korn; Claudia Kücherer; Thomas Leitner; Clive Loveday; E MacRae; I Maljkovic; Carmen de Mendoza; Laurence Meyer; Claus Nielsen; Eline Op de Coul; Vidar Ormaasen; D Paraskevis; Luc Perrin

BACKGROUND Infection with drug-resistant human immunodeficiency virus type 1 (HIV-1) can impair the response to combination therapy. Widespread transmission of drug-resistant variants has the disturbing potential of limiting future therapy options and affecting the efficacy of postexposure prophylaxis. METHODS We determined the baseline rate of drug resistance in 2208 therapy-naive patients recently and chronically infected with HIV-1 from 19 European countries during 1996-2002. RESULTS In Europe, 1 of 10 antiretroviral-naive patients carried viruses with > or = 1 drug-resistance mutation. Recently infected patients harbored resistant variants more often than did chronically infected patients (13.5% vs. 8.7%; P=.006). Non-B viruses (30%) less frequently carried resistance mutations than did subtype B viruses (4.8% vs. 12.9%; P<.01). Baseline resistance increased over time in newly diagnosed cases of non-B infection: from 2.0% (1/49) in 1996-1998 to 8.2% (16/194) in 2000-2001. CONCLUSIONS Drug-resistant variants are frequently present in both recently and chronically infected therapy-naive patients. Drug-resistant variants are most commonly seen in patients infected with subtype B virus, probably because of longer exposure of these viruses to drugs. However, an increase in baseline resistance in non-B viruses is observed. These data argue for testing all drug-naive patients and are of relevance when guidelines for management of postexposure prophylaxis and first-line therapy are updated.


Clinical Microbiology Reviews | 1998

Molecular Typing of Enteroviruses: Current Status and Future Requirements

Peter Muir; Ulrike Kämmerer; Klaus Korn; Mick N. Mulders; Tuija Pöyry; Benedikt Weissbrich; Reinhard Kandolf; G.M. Cleator; Anton M. van Loon

SUMMARY Human enteroviruses have traditionally been typed according to neutralization serotype. This procedure is limited by the difficulty in culturing some enteroviruses, the availability of antisera for serotyping, and the cost and technical complexity of serotyping procedures. Furthermore, the impact of information derived from enterovirus serotyping is generally perceived to be low. Enteroviruses are now increasingly being detected by PCR rather than by culture. Classical typing methods will therefore no longer be possible in most instances. An alternative means of enterovirus typing, employing PCR in conjunction with molecular genetic techniques such as nucleotide sequencing or nucleic acid hybridization, would complement molecular diagnosis, may overcome some of the problems associated with serotyping, and would provide additional information regarding the epidemiology and biological properties of enteroviruses. We argue the case for developing a molecular typing system, discuss the genetic basis of such a system, review the literature describing attempts to identify or classify enteroviruses by molecular methods, and suggest ways in which the goal of molecular typing may be realized.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype.

Niko Beerenwinkel; Barbara Schmidt; Hauke Walter; Rolf Kaiser; Thomas Lengauer; Daniel Hoffmann; Klaus Korn; Joachim Selbig

Drug resistance testing has been shown to be beneficial for clinical management of HIV type 1 infected patients. Whereas phenotypic assays directly measure drug resistance, the commonly used genotypic assays provide only indirect evidence of drug resistance, the major challenge being the interpretation of the sequence information. We analyzed the significance of sequence variations in the protease and reverse transcriptase genes for drug resistance and derived models that predict phenotypic resistance from genotypes. For 14 antiretroviral drugs, both genotypic and phenotypic resistance data from 471 clinical isolates were analyzed with a machine learning approach. Information profiles were obtained that quantify the statistical significance of each sequence position for drug resistance. For the different drugs, patterns of varying complexity were observed, including between one and nine sequence positions with substantial information content. Based on these information profiles, decision tree classifiers were generated to identify genotypic patterns characteristic of resistance or susceptibility to the different drugs. We obtained concise and easily interpretable models to predict drug resistance from sequence information. The prediction quality of the models was assessed in leave-one-out experiments in terms of the prediction error. We found prediction errors of 9.6–15.5% for all drugs except for zalcitabine, didanosine, and stavudine, with prediction errors between 25.4% and 32.0%. A prediction service is freely available at http://cartan.gmd.de/geno2pheno.html.


The Journal of Infectious Diseases | 2009

Transmission of Drug-Resistant HIV-1 Is Stabilizing in Europe

Jurgen Vercauteren; Annemarie M. J. Wensing; David A. M. C. van de Vijver; Jan Albert; Claudia Balotta; Osamah Hamouda; Claudia Kücherer; Daniel Struck; Jean-Claude Schmit; Birgitta Åsjö; Marie Bruckova; Ricardo Jorge Camacho; Bonaventura Clotet; Suzie Coughlan; Zehava Grossman; Andrzej Horban; Klaus Korn; Leondios G. Kostrikis; Claus Nielsen; Dimitrios Paraskevis; Mario Poljak; Elisabeth Puchhammer-Stöckl; Chiara Riva; Lidia Ruiz; Mika Salminen; Rob Schuurman; Anders Sönnerborg; Danica Stanekova; Maja Stanojevic; Anne-Mieke Vandamme

The SPREAD Programme investigated prospectively the time trend from September 2002 through December 2005 of transmitted drug resistance (TDR) among 2793 patients in 20 European countries and in Israel with newly diagnosed human immunodeficiency virus type 1 (HIV-1) infection. The overall prevalence of TDR was 8.4% (225 of 2687 patients; 95% confidence interval [CI], 7.4%-9.5%), the prevalence of nucleoside reverse-transcriptase inhibitor (NRTI) resistance was 4.7% (125 of 2687 patients; 95% CI, 3.9%-5.5%), the prevalence of nonucleoside reverse-transcriptase inhibitor (NNRTI) resistance was 2.3% (62 of 2687 patients; 95% CI, 1.8%-2.9%), and the prevalence of protease inhibitor (PI) resistance was 2.9% (79 of 2687 patients; 95% CI, 2.4%-3.6%). There was no time trend in the overall TDR or in NRTI resistance, but there was a statistically significant decrease in PI resistance (P = .04) and in NNRTI resistance after an initial increase (P = .02). We found that TDR appears to be stabilizing in Europe, consistent with recent reports of decreasing drug resistance and improved viral suppression in patients treated for HIV-1 infection.


Nucleic Acids Research | 2003

Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes

Niko Beerenwinkel; Martin Däumer; Mark Oette; Klaus Korn; Daniel Hoffmann; Rolf Kaiser; Thomas Lengauer; Joachim Selbig; Hauke Walter

Therapeutic success of anti-HIV therapies is limited by the development of drug resistant viruses. These genetic variants display complex mutational patterns in their pol gene, which codes for protease and reverse transcriptase, the molecular targets of current antiretroviral therapy. Genotypic resistance testing depends on the ability to interpret such sequence data, whereas phenotypic resistance testing directly measures relative in vitro susceptibility to a drug. From a set of 650 matched genotype-phenotype pairs we construct regression models for the prediction of phenotypic drug resistance from genotypes. Since the range of resistance factors varies considerably between different drugs, two scoring functions are derived from different sets of predicted phenotypes. Firstly, we compare predicted values to those of samples derived from 178 treatment-naive patients and report the relative deviance. Secondly, estimation of the probability density of 2000 predicted phenotypes gives rise to an intrinsic definition of a susceptible and a resistant subpopulation. Thus, for a predicted phenotype, we calculate the probability of membership in the resistant subpopulation. Both scores provide standardized measures of resistance that can be calculated from the genotype and are comparable between drugs. The geno2pheno system makes these genotype interpretations available via the Internet (http://www.genafor.org/).


Lancet Infectious Diseases | 2011

European guidelines on the clinical management of HIV-1 tropism testing

Linos Vandekerckhove; Annemarie M. J. Wensing; Rolf Kaiser; F Brun-Vezinet; Bonaventura Clotet; A. De Luca; S. Dressler; F. García; Anna Maria Geretti; Thomas Klimkait; Klaus Korn; Bernard Masquelier; Carlo Federico Perno; Jonathan M. Schapiro; Vincent Soriano; Anders Sönnerborg; Anne-Mieke Vandamme; Chris Verhofstede; Hauke Walter; Maurizio Zazzi; Charles A. Boucher

Viral tropism is the ability of viruses to enter and infect specific host cells and is based on the ability of viruses to bind to receptors on those cells. Testing for HIV tropism is recommended before prescribing a chemokine receptor blocker. In most European countries, HIV tropism is identified with tropism phenotype testing. New data support genotype analysis of the HIV third hypervariable loop (V3) for the identification of tropism. The European Consensus Group on clinical management of tropism testing was established to make recommendations to clinicians and clinical virologists. The panel recommends HIV-tropism testing for the following groups: drug-naive patients in whom toxic effects are anticipated or for whom few treatment options are available; patients who have poor tolerability to or toxic effects from current treatment or who have CNS pathology; and patients for whom therapy has failed and a change in treatment is considered. In general, an enhanced sensitivity Trofile assay and V3 population genotyping are the recommended methods. Genotypic methods are anticipated to be used more frequently in the clinical setting because of their greater accessibility, lower cost, and faster turnaround time than other methods. For the interpretation of V3 loop genotyping, clinically validated systems should be used when possible. Laboratories doing HIV tropism tests should have adequate quality assurance measures. Similarly, close collaboration between HIV clinicians and virologists is needed to ensure adequate diagnostic and treatment decisions.


Retrovirology | 2009

Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach

Dimitrios Paraskevis; Oliver G. Pybus; Gkikas Magiorkinis; Angelos Hatzakis; Annemarie M. J. Wensing; David A. M. C. van de Vijver; Jan Albert; Birgitta Åsjö; Claudia Balotta; Enzo Boeri; Ricardo Jorge Camacho; Marie-Laure Chaix; Suzie Coughlan; Dominique Costagliola; Andrea De Luca; Carmen de Mendoza; Inge Derdelinckx; Zehava Grossman; O Hamouda; I. M. Hoepelman; Andrzej Horban; Klaus Korn; Claudia Kücherer; Thomas Leitner; Clive Loveday; E MacRae; I. Maljkovic-Berry; Laurence Meyer; Claus Nielsen; Eline Op de Coul

BackgroundThe prevalence and the origin of HIV-1 subtype B, the most prevalent circulating clade among the long-term residents in Europe, have been studied extensively. However the spatial diffusion of the epidemic from the perspective of the virus has not previously been traced.ResultsIn the current study we inferred the migration history of HIV-1 subtype B by way of a phylogeography of viral sequences sampled from 16 European countries and Israel. Migration events were inferred from viral phylogenies by character reconstruction using parsimony. With regard to the spatial dispersal of the HIV subtype B sequences across viral phylogenies, in most of the countries in Europe the epidemic was introduced by multiple sources and subsequently spread within local networks. Poland provides an exception where most of the infections were the result of a single point introduction. According to the significant migratory pathways, we show that there are considerable differences across Europe. Specifically, Greece, Portugal, Serbia and Spain, provide sources shedding HIV-1; Austria, Belgium and Luxembourg, on the other hand, are migratory targets, while for Denmark, Germany, Italy, Israel, Norway, the Netherlands, Sweden, Switzerland and the UK we inferred significant bidirectional migration. For Poland no significant migratory pathways were inferred.ConclusionSubtype B phylogeographies provide a new insight about the geographical distribution of viral lineages, as well as the significant pathways of virus dispersal across Europe, suggesting that intervention strategies should also address tourists, travellers and migrants.


Journal of Acquired Immune Deficiency Syndromes | 2006

The Calculated Genetic Barrier for Antiretroviral Drug Resistance Substitutions Is Largely Similar for Different HIV-1 Subtypes

D.A.M.C. van de Vijver; A.M.J. Wensing; Gioacchino Angarano; Birgitta Åsjö; Claudia Balotta; Ricardo Jorge Camacho; M-L Chaix; Dominique Costagliola; A. De Luca; Inge Derdelinckx; Zehava Grossman; O Hamouda; Angelos Hatzakis; Robert Hemmer; Andy I. M. Hoepelman; Andrzej Horban; Klaus Korn; Claudia Kücherer; Thomas Leitner; Clive Loveday; E MacRae; I Maljkovic; C de Mendoza; Laurence Meyer; Carsten Uhd Nielsen; E.L.M. Op de Coul; V. Omaasen; Dimitrios Paraskevis; L Perrin; Elisabeth Puchhammer-Stöckl

Background: The genetic barrier, defined as the number of mutations required to overcome drug-selective pressure, is an important factor for the development of HIV drug resistance. Because of high variability between subtypes, particular HIV-1 subtypes could have different genetic barriers for drug resistance substitutions. This study compared the genetic barrier between subtypes using some 2000 HIV-1 sequences (>600 of non-B subtype) isolated from anti-retroviral-naive patients in Europe. Methods: The genetic barrier was calculated as the sum of transitions (scored as 1) and/or transversions (2.5) required for evolution to any major drug resistance substitution. In addition, the number of minor protease substitutions was determined for every subtype. Results: Few dissimilarities were found. An increased genetic barrier was calculated for I82A (subtypes C and G), V108I (subtype G), V118I (subtype G), Q151M (subtypes D and F), L210W (subtypes C, F, G, and CRF02_AG), and P225H (subtype A) (P < 0.001 compared with subtype B). A decreased genetic barrier was found for I82T (subtypes C and G) and V106M (subtype C) (P < 0.001 vs subtype B). Conversely, minor protease substitutions differed extensively between subtypes. Conclusions: Based on the calculated genetic barrier, the rate of drug resistance development may be similar for different HIV-1 subtypes. Because of differences in minor protease substitutions, protease inhibitor resistance could be enhanced in particular subtypes once the relevant major substitutions are selected.


Bioinformatics | 2005

Computational methods for the design of effective therapies against drug resistant HIV strains

Niko Beerenwinkel; Tobias Sing; Thomas Lengauer; Jörg Rahnenführer; Kirsten Roomp; Igor Savenkov; Roman Fischer; Daniel Hoffmann; Joachim Selbig; Klaus Korn; Hauke Walter; Thomas Berg; Patrick Braun; Gerd Fätkenheuer; Mark Oette; Jürgen K. Rockstroh; Bernd Kupfer; Rolf Kaiser; Martin Däumer

The development of drug resistance is a major obstacle to successful treatment of HIV infection. The extraordinary replication dynamics of HIV facilitates its escape from selective pressure exerted by the human immune system and by combination drug therapy. We have developed several computational methods whose combined use can support the design of optimal antiretroviral therapies based on viral genomic data.


Retrovirology | 2013

HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in Europe suggest highly compartmentalized epidemics

Ana B. Abecasis; Annemarie M. J. Wensing; D Paraskevis; Jurgen Vercauteren; Kristof Theys; David A. M. C. van de Vijver; Jan Albert; Birgitta Åsjö; Claudia Balotta; Danail Beshkov; Ricardo Jorge Camacho; Bonaventura Clotet; Cillian F. De Gascun; Algis Griskevicius; Zehava Grossman; Osamah Hamouda; Andrzej Horban; Tatjana Kolupajeva; Klaus Korn; Leon G. Kostrikis; Claudia Kücherer; Kirsi Liitsola; Marek Linka; Claus Nielsen; Dan Otelea; Roger Paredes; Mario Poljak; Elisabeth Puchhammer-Stöckl; Jean-Claude Schmit; Anders Sönnerborg

BackgroundUnderstanding HIV-1 subtype distribution and epidemiology can assist preventive measures and clinical decisions. Sequence variation may affect antiviral drug resistance development, disease progression, evolutionary rates and transmission routes.ResultsWe investigated the subtype distribution of HIV-1 in Europe and Israel in a representative sample of patients diagnosed between 2002 and 2005 and related it to the demographic data available. 2793 PRO-RT sequences were subtyped either with the REGA Subtyping tool or by a manual procedure that included phylogenetic tree and recombination analysis. The most prevalent subtypes/CRFs in our dataset were subtype B (66.1%), followed by sub-subtype A1 (6.9%), subtype C (6.8%) and CRF02_AG (4.7%). Substantial differences in the proportion of new diagnoses with distinct subtypes were found between European countries: the lowest proportion of subtype B was found in Israel (27.9%) and Portugal (39.2%), while the highest was observed in Poland (96.2%) and Slovenia (93.6%). Other subtypes were significantly more diagnosed in immigrant populations. Subtype B was significantly more diagnosed in men than in women and in MSM > IDUs > heterosexuals. Furthermore, the subtype distribution according to continent of origin of the patients suggests they acquired their infection there or in Europe from compatriots.ConclusionsThe association of subtype with demographic parameters suggests highly compartmentalized epidemics, determined by social and behavioural characteristics of the patients.

Collaboration


Dive into the Klaus Korn's collaboration.

Top Co-Authors

Avatar

Hauke Walter

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Horban

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Daniel Hoffmann

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge