Klaus Nordhausen
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Nordhausen.
Journal of Multivariate Analysis | 2017
Joni Virta; Bing Li; Klaus Nordhausen; Hannu Oja
Abstract In preprocessing tensor-valued data, e.g., images and videos, a common procedure is to vectorize the observations and subject the resulting vectors to one of the many methods used for independent component analysis (ICA). However, the tensor structure of the original data is lost in the vectorization and, as a more suitable alternative, we propose the matrix- and tensor fourth order blind identification (MFOBI and TFOBI). In these tensorial extensions of the classic fourth order blind identification (FOBI) we assume a Kronecker structure for the mixing and perform FOBI simultaneously on each direction of the observed tensors. We discuss the theory and assumptions behind MFOBI and TFOBI and provide two different algorithms and related estimates of the unmixing matrices along with their asymptotic properties. Finally, simulations are used to compare the method’s performance with that of classical FOBI for vectorized data and we end with a real data clustering example.
Journal of Computational and Graphical Statistics | 2018
Joni Virta; Bing Li; Klaus Nordhausen; Hannu Oja
ABSTRACT Independent component analysis is a standard tool in modern data analysis and numerous different techniques for applying it exist. The standard methods however quickly lose their effectiveness when the data are made up of structures of higher order than vectors, namely, matrices or tensors (e.g., images or videos), being unable to handle the high amounts of noise. Recently, an extension of the classic fourth-order blind identification (FOBI) specially suited for tensor-valued observations was proposed and showed to outperform its vector version for tensor data. In this article, we extend another popular independent component analysis method, the joint approximate diagonalization of eigen-matrices (JADE), for tensor observations. In addition to the theoretical background, we also provide the asymptotic properties of the proposed estimator and use both simulations and real data to show its usefulness and superiority over its competitors. Supplementary material including the proofs of the theorems and the codes for running the simulations and the real data example are available online.
Signal Processing | 2017
Joni Virta; Klaus Nordhausen
Abstract The blind source separation model for multivariate time series generally assumes that the observed series is a linear transformation of an unobserved series with temporally uncorrelated or independent components. Given the observations, the objective is to find a linear transformation that recovers the latent series. Several methods for accomplishing this exist and three particular ones are the classic SOBI and the recently proposed generalized FOBI (gFOBI) and generalized JADE (gJADE), each based on the use of joint lagged moments. In this paper we generalize the methodologies behind these algorithms for tensor-valued time series. We assume that our data consists of a tensor observed at each time point and that the observations are linear transformations of latent tensors we wish to estimate. The tensorial generalizations are shown to have particularly elegant forms and we show that each of them is Fisher consistent and orthogonal equivariant. Comparing the new methods with the original ones in various settings shows that the tensorial extensions are superior to both their vector-valued counterparts and to two existing tensorial dimension reduction methods for i.i.d. data. Finally, applications to fMRI-data and video processing show that the methods are capable of extracting relevant information from noisy high-dimensional data.
international conference on latent variable analysis and signal separation | 2018
Markus Matilainen; Klaus Nordhausen; Joni Virta
We assume a second-order source separation model where the observed multivariate time series is a linear mixture of latent, temporally uncorrelated time series with some components pure white noise. To avoid the modelling of noise, we extract the non-noise latent components using some standard method, allowing the modelling of the extracted univariate time series individually. An important question is the determination of which of the latent components are of interest in modelling and which can be considered as noise. Bootstrap-based methods have recently been used in determining the latent dimension in various methods of unsupervised and supervised dimension reduction and we propose a set of similar estimation strategies for second-order stationary time series. Simulation studies and a sound wave example are used to show the method’s effectiveness.
Genome Biology | 2018
Andrew E. Teschendorff; Han Jing; Dirk S. Paul; Joni Virta; Klaus Nordhausen
There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA outperforms competing methods in identifying biological sources of data variation at a reduced computational cost. On epigenetic data, tICA can identify methylation quantitative trait loci at high sensitivity. In the cancer context, tICA identifies gene modules whose expression variation across tumours is driven by copy-number or DNA methylation changes, but whose deregulation relative to normal tissue is independent of such alterations, a result we validate by direct analysis of individual data types.
Computational Statistics & Data Analysis | 2018
Aurore Archimbaud; Klaus Nordhausen; Anne Ruiz-Gazen
Abstract In high reliability standards fields such as automotive, avionics or aerospace, the detection of anomalies is crucial. An efficient methodology for automatically detecting multivariate outliers is introduced. It takes advantage of the remarkable properties of the Invariant Coordinate Selection (ICS) method which leads to an affine invariant coordinate system in which the Euclidian distance corresponds to a Mahalanobis Distance (MD) in the original coordinates. The limitations of MD are highlighted using theoretical arguments in a context where the dimension of the data is large. Owing to the resulting dimension reduction, ICS is expected to improve the power of outlier detection rules such as MD-based criteria. The paper includes practical guidelines for using ICS in the context of a small proportion of outliers. The use of the regular covariance matrix and the so called matrix of fourth moments as the scatter pair is recommended. This choice combines the simplicity of implementation together with the possibility to derive theoretical results. The selection of relevant invariant components through parallel analysis and normality tests is addressed. A simulation study confirms the good properties of the proposal and provides a comparison with Principal Component Analysis and MD. The performance of the proposal is also evaluated on two real data sets using a user-friendly R package accompanying the paper.
Annual Review of Statistics and Its Application | 2018
Klaus Nordhausen; Hannu Oja
In this article, we provide a personal review of the literature on nonparametric and robust tools in the standard univariate and multivariate location and scatter, as well as linear regression problems, with a special focus on sign and rank methods, their equivariance and invariance properties, and their robustness and efficiency. Beyond parametric models, the population quantities of interest are often formulated as location, scatter, skewness, kurtosis and other functionals. Some old and recent tools for model checking, dimension reduction, and subspace estimation in wide semiparametric models are discussed. We also discuss recent extensions of procedures in certain nonstandard semiparametric cases including clustered and matrix-valued data. Our personal list of important unsolved and future issues is provided.
Archive | 2011
Klaus Nordhausen; Hannu Oja
Archive | 2016
Joni Virta; Klaus Nordhausen; Hannu Oja
ieee signal processing workshop on statistical signal processing | 2018
Klaus Nordhausen; Joni Virta