Klaus-Peter Koepfli
Saint Petersburg State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus-Peter Koepfli.
Nature | 2011
Eline D. Lorenzen; David Nogués-Bravo; Ludovic Orlando; Jaco Weinstock; Jonas Binladen; Katharine A. Marske; Andrew Ugan; Michael K. Borregaard; M. Thomas P. Gilbert; Rasmus Nielsen; Simon Y. W. Ho; Ted Goebel; Kelly E. Graf; David A. Byers; Jesper Stenderup; Morten Rasmussen; Paula F. Campos; Jennifer A. Leonard; Klaus-Peter Koepfli; Duane G. Froese; Grant D. Zazula; Thomas W. Stafford; Kim Aaris-Sørensen; Persaram Batra; Alan M. Haywood; Joy S. Singarayer; Paul J. Valdes; G. G. Boeskorov; James A. Burns; Sergey P. Davydov
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Science | 2013
Olaf Thalmann; Beth Shapiro; Pin Cui; Verena J. Schuenemann; Susanna Sawyer; D. L. Greenfield; Mietje Germonpré; Mikhail V. Sablin; F. López-Giráldez; X. Domingo-Roura; Hannes Napierala; H-P. Uerpmann; D. M. Loponte; A. A. Acosta; Liane Giemsch; Ralf Schmitz; B. Worthington; Jane E. Buikstra; Anna S. Druzhkova; Alexander S. Graphodatsky; Nikolai D. Ovodov; Niklas Wahlberg; Adam H. Freedman; Rena M. Schweizer; Klaus-Peter Koepfli; Jennifer A. Leonard; Matthias Meyer; Johannes Krause; Svante Pääbo; Richard E. Green
Dog Domestication The precise details of the domestication and origins of domestic dogs are unclear. Thalmann et al. (p. 871; see the cover) analyzed complete mitochondrial genomes from present-day dogs and wolves, as well as 18 fossil canids dating from 1000 to 36,000 years ago from the Old and New Worlds. The data suggest that an ancient, now extinct, central European population of wolves was directly ancestral to domestic dogs. Furthermore, several ancient dogs may represent failed domestication events. Ancient DNA suggests that dog domestication was complex and likely originated in Europe. The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to >30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. The mitochondrial genomes of all modern dogs are phylogenetically most closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.
BMC Biology | 2008
Klaus-Peter Koepfli; Kerry A Deere; Graham J. Slater; Colleen Begg; Keith Begg; Lon I. Grassman; Mauro Lucherini; Géraldine Veron; Robert K. Wayne
BackgroundAdaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.ResultsWe constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.ConclusionCombined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.
Molecular Phylogenetics and Evolution | 2003
Heather Amrine-Madsen; Klaus-Peter Koepfli; Robert K. Wayne; Mark S. Springer
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.
BMC Biology | 2007
David M. Brown; Rick A. Brenneman; Klaus-Peter Koepfli; John P. Pollinger; Borja Milá; Nicholas J Georgiadis; Edward E. Louis; Gregory F. Grether; David K. Jacobs; Robert K. Wayne
BackgroundA central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.ResultsBy analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.ConclusionSuch extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.
Molecular Phylogenetics and Evolution | 2010
Eduardo Eizirik; William J. Murphy; Klaus-Peter Koepfli; Warren E. Johnson; Jerry W. Dragoo; Robert K. Wayne; Stephen J. O’Brien
The mammalian order Carnivora has attracted the attention of scientists of various disciplines for decades, leading to intense interest in defining its supra-familial relationships. In the last few years, major changes to the topological structure of the carnivoran tree have been proposed and supported by various molecular data sets, radically changing the traditional view of family composition in this order. Although a sequence of molecular studies have established a growing consensus with respect to most inter-familial relationships, no analysis so far has included all carnivoran lineages (both feliform and caniform) in an integrated data set, so as to determine comparative patterns of diversification. Moreover, no study conducted thus far has estimated divergence dates among all carnivoran families, which is an important requirement in the attempt to understand the patterns and tempo of diversification in this group. In this study, we have investigated the phylogenetic relationships among carnivoran families, and performed molecular dating analyses of the inferred nodes. We assembled a molecular supermatrix containing 14 genes (7765 bp), most of which have not been previously used in supra-familial carnivoran phylogenetics, for 50 different genera representing all carnivoran families. Analysis of this data set led to consistent and robust resolution of all supra-familial nodes in the carnivoran tree, and allowed the construction of a molecular timescale for the evolution of this mammalian order.
Conservation Genetics | 2000
John F. Dallas; David N. Carss; Freda Marshall; Klaus-Peter Koepfli; Hans Kruuk; Philip J. Bacon; Stuart B. Piertney
John F. Dallas1,∗, David N. Carss2, Freda Marshall1, Klaus-Peter Koepfli3, Hans Kruuk2, Stuart B. Piertney1 & Philip J. Bacon2 1NERC Molecular Genetics in Ecology Initiative, Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK; 2Centre for Ecology and Hydrology, Banchory Research Station, Glassel, Hill of Brathens, Banchory, Aberdeenshire, AB31 4BY, UK; 3Department of Organismic Biology, Ecology and Evolution, 621 Charles E. Young Drive South, University of California, Los Angeles, CA 90095-1606, USA (∗Corresponding author: E-mail: [email protected])
Systematic Biology | 2003
Klaus-Peter Koepfli; Robert K. Wayne
We compared the utility of five nuclear gene segments amplified with type I sequence-tagged site (STS) primers versus the complete mitochondrial cytochrome b (cyt b) gene in resolving phylogenetic relationships within the Mustelidae, a large and ecomorphologically diverse family of mammalian carnivores. Maximum parsimony and likelihood analyses of separate and combined data sets were used to address questions regarding the levels of homoplasy, incongruence, and information content within and among loci. All loci showed limited resolution in the separate analyses because of either a low amount of informative variation (nuclear genes) or high levels of homoplasy (cyt b). Individually or combined, the nuclear gene sequences had less homoplasy, retained more signal, and were more decisive, even though cyt b contained more potentially informative variation than all the nuclear sequences combined. We obtained a well-resolved and supported phylogeny when the nuclear sequences were combined. Maximum likelihood and Bayesian phylogenetic analyses of the total combined data (nuclear and mitochondrial DNA sequences) were able to better accommodate the high levels of homoplasy in the cyt b data than was an equally weighted maximum parsimony analysis. Furthermore, partition Bremer support analyses of the total combined tree showed that the relative support of the nuclear and mitochondrial genes differed according to whether or not the homoplasy in the cyt b gene was downweighted. Although the cyt b gene contributed phylogenetic signal for most major groupings, the nuclear gene sequences were more effective in reconstructing the deeper nodes of the combined tree in the equally weighted parsimony analysis, as judged by the variable-length bootstrap method. The total combined data supported the monophyly of the Lutrinae (otters), whereas the Melinae (badgers) and Mustelinae (weasels, martens) were both paraphyletic. The American badger, Taxidea taxus (Taxidiinae), was the most basal taxon. Because hundreds of type I STS primer sets spanning the complete genomes of the human and mouse have been published and thus represent many independently segregating loci, the potential utility of these markers for molecular systematics of mammals and other groups is enormous.
PLOS ONE | 2011
Binu Shrestha; J. Michael Reed; Philip T. Starks; Gretchen E. Kaufman; Jared V. Goldstone; Melody E. Roelke; Stephen J. O'Brien; Klaus-Peter Koepfli; Laurence G. Frank; Michael H. Court
The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.
Current Biology | 2015
Klaus-Peter Koepfli; John P. Pollinger; Raquel Godinho; Jacqueline Robinson; Amanda J. Lea; Sarah A. Hendricks; Rena M. Schweizer; Olaf Thalmann; Pedro Miguel Silva; Zhenxin Fan; Andrey A. Yurchenko; Pavel Dobrynin; Alexey I. Makunin; James A. Cahill; Beth Shapiro; Francisco Álvares; José Carlos Brito; Eli Geffen; Jennifer A. Leonard; Kristofer M. Helgen; Warren E. Johnson; Stephen J. O’Brien; Blaire Van Valkenburgh; Robert K. Wayne
The golden jackal of Africa (Canis aureus) has long been considered a conspecific of jackals distributed throughout Eurasia, with the nearest source populations in the Middle East. However, two recent reports found that mitochondrial haplotypes of some African golden jackals aligned more closely to gray wolves (Canis lupus), which is surprising given the absence of gray wolves in Africa and the phenotypic divergence between the two species. Moreover, these results imply the existence of a previously unrecognized phylogenetically distinct species despite a long history of taxonomic work on African canids. To test the distinct-species hypothesis and understand the evolutionary history that would account for this puzzling result, we analyzed extensive genomic data including mitochondrial genome sequences, sequences from 20 autosomal loci (17 introns and 3 exon segments), microsatellite loci, X- and Y-linked zinc-finger protein gene (ZFX and ZFY) sequences, and whole-genome nuclear sequences in African and Eurasian golden jackals and gray wolves. Our results provide consistent and robust evidence that populations of golden jackals from Africa and Eurasia represent distinct monophyletic lineages separated for more than one million years, sufficient to merit formal recognition as different species: C. anthus (African golden wolf) and C. aureus (Eurasian golden jackal). Using morphologic data, we demonstrate a striking morphologic similarity between East African and Eurasian golden jackals, suggesting parallelism, which may have misled taxonomists and likely reflects uniquely intense interspecific competition in the East African carnivore guild. Our study shows how ecology can confound taxonomy if interspecific competition constrains size diversification.