Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Schmierer is active.

Publication


Featured researches published by Klaus Schmierer.


Annals of Neurology | 2004

Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain

Klaus Schmierer; Francesco Scaravilli; Daniel R. Altmann; Gareth J. Barker; David H. Miller

Several quantitative magnetic resonance (MR) measures are used to investigate multiple sclerosis (MS) in vivo. Precise quantitative investigation of the histopathological correlates of such measures has, to date, been limited. This study investigates the relationship of quantitative measures of myelin content, axonal density, and gliosis with quantitative MR measures in postmortem (PM) MS tissue. MR imaging (MRI) was performed on a 1.5T scanner and T1‐relaxation time (T1‐RT) and magnetization transfer ratio (MTR) maps were acquired in fresh PM brain of 20 MS subjects. Myelin content, axonal counts, and the extent of gliosis all were quantified using morphometric and digital imaging techniques. MRI and pathological data were in most cases coregistered using stereotactic navigation. Using multiple regression analysis, we detected significant correlations between myelin content (Trmyelin) and MTR (r = −0.84, p < 0.001) and myelin content and axonal count (−0.80, p < 0.001); MTR correlated with T1‐RT (r = −0.79, p < 0.001). No association was detected between the extent of gliosis and either MR measure. MTR was significantly higher in remyelinated than demyelinated lesions (means: 30.0 [standard deviation, 2.9] vs 23.8 [standard deviation, 4.3], p = 0.008). In conclusion, MTR is affected by myelin content in MS white matter. Ann Neurol 2004


The Lancet | 2008

Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study

Ludwig Kappos; Ralf Gold; David H. Miller; David G. MacManus; Eva Havrdova; Volker Limmroth; Chris H. Polman; Klaus Schmierer; Tarek A. Yousry; Minhua Yang; Mefkure Eraksoy; Eva Meluzínová; Ivan Rektor; Katherine Dawson; Alfred Sandrock; Gilmore O'neill

BACKGROUND Oral fumarate (BG00012) might have dual anti-inflammatory and neuroprotective effects. Our aim was to assess the efficacy and safety of BG00012 in patients with relapsing-remitting multiple sclerosis. METHODS 257 patients, aged 18-55 years, with relapsing-remitting multiple sclerosis were randomly assigned to receive 120 mg once daily (n=64), 120 mg three times daily (n=64), or 240 mg three times daily (n=64) BG00012, or placebo (n=65) for 24 weeks. During an extension period of 24 weeks for safety assessment, patients treated with placebo received BG00012 240 mg three times daily. The primary endpoint was total number of new gadolinium enhancing (GdE) lesions on brain MRI scans at weeks 12, 16, 20, and 24. Additional endpoints included cumulative number of new GdE lesions (weeks 4-24), new or enlarging T2-hyperintense lesions, new T1-hypointense lesions at week 24, and annualised relapse rate. Analysis was done on the efficacy-evaluable population. Safety and tolerability were also assessed. This study is registered with ClinicalTrials.gov, number NCT00168701. FINDINGS Treatment with BG00012 240 mg three times daily reduced by 69% the mean total number of new GdE lesions from week 12 to 24 compared with placebo (1.4 vs 4.5, p<0.0001). It also reduced number of new or enlarging T2-hyperintense (p=0.0006) and new T1-hypointense (p=0.014) lesions compared with placebo. BG00012 reduced annualised relapse rate by 32% (0.44 vs 0.65 for placebo; p=0.272). Adverse events more common in patients given BG00012 than in those given placebo included abdominal pain, flushing, and hot flush. Dose-related adverse events in patients on BG00012 were headache, fatigue, and feeling hot. INTERPRETATION The anti-inflammatory effects and favourable safety profile of BG00012 warrant further long-term phase III studies in large patient groups.


Annals of Neurology | 2010

No Cerebrocervical Venous Congestion in Patients with Multiple Sclerosis

Florian Doepp; Friedemann Paul; José M. Valdueza; Klaus Schmierer; Stephan J. Schreiber

Multiple sclerosis (MS) is characterized by demyelination centered around cerebral veins. Recent studies suggested this topographic pattern may be caused by venous congestion, a condition termed chronic cerebrospinal venous insufficiency (CCSVI). Published sonographic criteria of CCSVI include reflux in the deep cerebral veins and/or the internal jugular and vertebral veins (IJVs and VVs), stenosis of the IJVs, missing flow in IJVs and VVs, and inverse postural response of the cerebral venous drainage.


Journal of Neurology | 2003

High field MRI correlates of myelin content and axonal density in multiple sclerosis--a post-mortem study of the spinal cord.

J. P. Mottershead; Klaus Schmierer; M. Clemence; John S. Thornton; Francesco Scaravilli; Gareth J. Barker; Paul S. Tofts; J. Newcombe; M. L. Cuzner; Roger J. Ordidge; W. I. McDonald; Dh Miller

Abstract.Different MRI techniques are used to investigate multiple sclerosis (MS) in vivo. The pathological specificity of these techniques is poorly understood, in particular their relationship to demyelination and axonal loss.The aim of this study was to evaluate the pathological substrate of high field MRI in post-mortem (PM) spinal cord (SC) of patients with MS. MRI was performed in PMSCs of four MS patients and a healthy subject on a 7 Tesla machine.Quantitative MRI maps (PD; T2; T1; magnetization transfer ratio, MTR; diffusion weighted imaging) were obtained. After scanning, the myelin content and the axonal density of the specimens were evaluated neuropathologically using quantitative techniques. Myelin content and axonal density correlated strongly with MTR, T1, PD, and diffusion anisotropy, but only moderately with T2 and weakly with the apparent diffusion coefficient.Quantitative MR measures provide a promising tool to evaluate components of MS pathology that are clinically meaningful. Further studies are warranted to investigate the potential of new quantitative MR measures to enable a distinction between axonal loss and demyelination and between demyelinated and remyelinated lesions.


Magnetic Resonance in Medicine | 2008

Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation

Klaus Schmierer; Claudia A.M. Wheeler-Kingshott; Daniel J. Tozer; Phil A. Boulby; Harold G. Parkes; Tarek A. Yousry; Francesco Scaravilli; Gareth J. Barker; Paul S. Tofts; David H. Miller

Unfixed and fixed postmortem multiple sclerosis (MS) brain is being used to probe pathology underlying quantitative MR (qMR) changes. Effects of fixation on qMR indices in MS brain are unknown. In 15 postmortem MS brain slices T1, T2, MT ratio (MTR), macromolecular proton fraction (fB), fractional anisotropy (FA), and mean, axial, and radial diffusivity (MD, Dax, and Drad) were assessed in white matter (WM) lesions (WML) and normal appearing WM (NAWM) before and after fixation in formalin. Myelin content, axonal count, and gliosis were quantified histologically. Students t‐test and regression were used for analysis. T1, T2, MTR, and fB obtained in unfixed MS brain were similar to published values obtained in patients with MS in vivo. Following fixation T1, T2 (NAWM, WML) and MTR (NAWM) dropped, whereas fB (NAWM, WML) increased. Compared to published in vivo data all diffusivity measures were lower in unfixed MS brain, and dropped further following fixation (except for FA). MTR was the best predictor of Tmyelin (inversely related to myelin) in unfixed MS brain (r = −0.83; P < 0.01) whereas postfixation T2 (r = 0.92; P < 0.01), T1 (r = 0.89; P < 0.01), and fB (r = −0.86; P < 0.01) were superior. All diffusivity measures (except for Dax in unfixed tissue) were predictors of myelin content. Magn Reson Med 59:268–277, 2008.


Journal of Magnetic Resonance Imaging | 2007

Quantitative Magnetization Transfer Imaging in Postmortem Multiple Sclerosis Brain

Klaus Schmierer; Daniel J. Tozer; Francesco Scaravilli; Daniel R. Altmann; Gareth J. Barker; Paul S. Tofts; David H. Miller

To investigate the relationship of myelin content, axonal density, and gliosis with the fraction of macromolecular protons (fB) and T2 relaxation of the macromolecular pool (T2B) acquired using quantitative magnetization transfer (qMT) MRI in postmortem brains of subjects with multiple sclerosis (MS).


Neurology | 2009

Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI

Rachel Farrell; D. Antony; G.R. Wall; Duncan A. Clark; L Fisniku; J. Swanton; Z. Khaleeli; Klaus Schmierer; Dh Miller; Gavin Giovannoni

Background: Evidence suggests that Epstein-Barr virus (EBV) plays a role in triggering or perpetuating disease activity in multiple sclerosis (MS). Methods: We investigated 100 subjects (50 clinically isolated syndrome [CIS], 25 relapsing-remitting [RR] MS, 25 primary progressive [PP] MS) for 1) evidence of EBV reactivation and 2) disease activity as indicated by serial gadolinium (Gd)-enhanced MRIs over a 5-year period. EBV DNA in blood was quantified by real-time quantitative PCR and EBV serology for anti-Epstein-Barr virus nuclear antigen 1 (EBNA-1) immunoglobulin G (IgG), anti-viral capsid antigen (VCA) IgG, and anti-EBV IgM. Data were analyzed using repeated measures analysis, analysis of variance, and logistic regression analysis. Results: All subjects had serologic evidence of previous EBV infection, but no lytic reactivation was detected. Significant differences in EBNA-1 IgG titers were found between subgroups, highest in the RRMS cohort compared with PPMS (p < 0.001) and CIS (p < 0.001). Gd-enhancing lesions on MRI correlated with EBNA-1 IgG (r = 0.33, p < 0.001) and EBNA-1:VCA IgG ratio (r = 0.36, p < 0.001). EBNA-1 IgG also correlated with change in T2 lesion volume (r = 0.27, p = 0.044) and Expanded Disability Status Scale score (r = 0.3, p = 0.035). Conclusions: The correlation between elevated Epstein-Barr virus nuclear antigen 1 (EBNA-1) immunoglobulin G (IgG) and gadolinium-enhancing lesions suggests an association between Epstein-Barr virus (EBV) infection and multiple sclerosis (MS) disease activity. The heightened immune response to EBV in MS is specifically related to EBNA-1 IgG, a marker of the latent phase of the virus. The lack of association between acute viral reactivation in the peripheral blood and Gd+ lesions suggests a limited role of the former in driving disease activity.


Multiple sclerosis and related disorders | 2015

Is it time to target no evident disease activity (NEDA) in multiple sclerosis

Gavin Giovannoni; Benjamin Turner; Sharmilee Gnanapavan; Curtis Offiah; Klaus Schmierer; Monica Marta

The management of multiple sclerosis is becoming increasingly complex with the emergence of new and more effective disease-modifying therapies (DMT). We propose a new treatment paradigm that individualises treatment based on a choice between two interchangeable therapeutic strategies of maintenance-escalation or induction therapy. We propose treating- to-target of no evident disease activity (NEDA) as defined using clinical and MRI criteria. This algorithm requires active monitoring with a rebaselining MRI, at a point in time after the specific DMT concerned has had sufficient time to work, and at least annual MRI studies to monitor for subclinical relapses. Disease activity on the maintenance-escalation therapy arm of the algorithm indicates a sub-optimal treatment response and should trigger a discussion about switching, or escalating, therapy or the consideration of switching to the induction therapy arm of the algorithm. In comparison, disease activity on an induction therapy arm would be an indication for retreatment or a switch to the maintenance-escalation therapy arm. We envisage the definition of NEDA evolving with time as new technological innovations are adopted into clinical practice, for example the normalisation of whole, or regional, brain atrophy rates and cerebrospinal fluid neurofilament levels.


European Journal of Human Genetics | 2002

Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis

Carol Dobson-Stone; Adrian Danek; Luca Rampoldi; Richard J. Hardie; Richard M. Chalmers; Nicholas W. Wood; Saeed Bohlega; Maria Teresa Dotti; Antonio Federico; Masami Shizuka; Makoto Tanaka; Mitsunori Watanabe; Yoshio Ikeda; Mitchell F. Brin; Lev G. Goldfarb; Barbara I. Karp; Saidi A. Mohiddin; Lameh Fananapazir; Alexander Storch; Alan Fryer; Paul Maddison; Igor Sibon; Paulo Cesar Trevisol-Bittencourt; Carlos Singer; Ignacio Requena Caballero; Jan O. Aasly; Klaus Schmierer; Reinhard Dengler; Lutz Peter Hiersemenzel; Massimo Zeviani

Chorea-acanthocytosis (ChAc) is an autosomal recessive neurological disorder whose characteristic features include hyperkinetic movements and abnormal red blood cell morphology. Mutations in the CHAC gene on 9q21 were recently found to cause chorea-acanthocytosis. CHAC encodes a large, novel protein with a yeast homologue implicated in protein sorting. In this study, all 73 exons plus flanking intronic sequence in CHAC were screened for mutations by denaturing high-performance liquid chromatography in 43 probands with ChAc. We identified 57 different mutations, 54 of which have not previously been reported, in 39 probands. The novel mutations comprise 15 nonsense, 22 insertion/deletion, 15 splice-site and two missense mutations and are distributed throughout the CHAC gene. Three mutations were found in multiple families within this or our previous study. The preponderance of mutations that are predicted to cause absence of gene product is consistent with the recessive inheritance of this disease. The high proportion of splice-site mutations found is probably a reflection of the large number of exons that comprise the CHAC gene. The CHAC protein product, chorein, appears to have a certain tolerance to amino-acid substitutions since only two out of nine substitutions described here appear to be pathogenic.


Brain | 2010

High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis

Klaus Schmierer; Harold G. Parkes; Po-Wah So; Shu F. An; Sebastian Brandner; Roger J. Ordidge; Tarek A. Yousry; David H. Miller

Multiple sclerosis is an inflammatory, degenerative disease of the central nervous system. The most obvious pathological change in multiple sclerosis is multifocal demyelination of the white matter, but grey matter demyelination may be of equal or even greater importance for its clinical manifestations. In order to assess the pathogenetic role of lesions in the grey and white matter, and to explore the association between demyelinated and non-lesional brain tissue, tools are needed to depict each of these tissue components accurately in vivo. Due to its sensitivity in detecting white matter lesions, T(2)-weighted magnetic resonance imaging at 1.5 T is important in the diagnosis of multiple sclerosis. However, magnetic resonance imaging at 1.5 T largely fails to detect grey matter lesions. In this study, we used T(2)-weighted magnetic resonance imaging at 9.4 T to detect grey matter lesions in fixed post-mortem multiple sclerosis motor cortex. Furthermore, we produced T(1), T(2) and magnetization transfer ratio maps, and correlated these indices with quantitative histology [neuronal density, intensity of immunostaining for myelin basic protein (reflecting myelin content) and phosphorylated neurofilament (reflecting axonal area)] using t-tests and multivariate regression. In 21 tissue samples, 28 cortical grey matter lesions were visible on both T(2)-weighted magnetic resonance imaging and sections immunostained for myelin basic protein, 15/28 being mixed white and grey matter and 11/28 subpial cortical grey matter lesions; 2/28 cortical grey matter lesions involved all layers of the cortex. Compared with non-lesional cortex, cortical grey matter lesions showed reduction of neuronal density (98/mm(2), SD = 34/mm(2;) versus 129/mm(2), SD = 44; P < 0.01), phosphorylated neurofilament (1/transmittance = 1.16; SD = 0.09 versus 1.24; SD = 0.1; P < 0.01) and magnetization transfer ratio (31.1 pu; SD = 11.9 versus 37.5 pu; SD = 8.7; P = 0.01), and an increase of T(2) (25.9; SD = 5 versus 22.6 ms; SD = 4.7; P < 0.01). Associations were detected between phosphorylated neurofilament and myelin basic protein (r = 0.58, P < 0.01), myelin basic protein and T(2) (r = -0.59, P < 0.01), and neuronal density and T(1) (r = -0.57, P < 0.01). All indices correlated with duration of tissue fixation, however, including the latter in the analysis did not fundamentally affect the associations described. Our data show that T(2)-weighted magnetic resonance imaging at 9.4 T enables detection of cortical grey matter lesion in post-mortem multiple sclerosis brain. The quantitative associations suggest that in cortical grey matter T(1) may be a predictor of neuronal density, and T(2) of myelin content (and-secondarily-axons). Successful translation of these results into in vivo studies using high field magnetic resonance imaging (e.g. 3 T and 7 T) will improve the assessment of cortical pathology and thereby have an impact on the diagnosis and natural history studies of patients with multiple sclerosis, as well as clinical trial designs for putative treatments to prevent cortical demyelination and neuronal loss.

Collaboration


Dive into the Klaus Schmierer's collaboration.

Top Co-Authors

Avatar

Gavin Giovannoni

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

David Baker

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Dh Miller

University College London

View shared research outputs
Top Co-Authors

Avatar

Benjamin Turner

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Marta

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Tarek A. Yousry

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

David H. Miller

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Sharmilee Gnanapavan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge