Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Schröppel is active.

Publication


Featured researches published by Klaus Schröppel.


Molecular Microbiology | 2008

Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans

Ekkehard Leberer; Doreen Harcus; Daniel Dignard; Lyne Johnson; Sophia Ushinsky; David Y. Thomas; Klaus Schröppel

The pathogenic fungus Candida albicans is capable of responding to a wide variety of environmental cues with a morphological transition from a budding yeast to a polarized filamentous form. We demonstrate that the Ras homologue of C. albicans, CaRas1p, is required for this morphological transition and thereby contributes to the development of pathogenicity. However, CaRas1p is not required for cellular viability. Deletion of both alleles of the CaRAS1 gene caused in vitro defects in morphological transition that were reversed by either supplementing the growth media with cAMP or overexpressing components of the filament‐inducing mitogen‐activated protein (MAP) kinase cascade. The induction of filament‐specific secreted aspartyl proteinases encoded by the SAP4–6 genes was blocked in the mutant cells. The defects in filament formation were also observed in situ after phagocytosis of C. albicans cells in a macrophage cell culture assay and, in vivo, after infection of kidneys in a mouse model for systemic candidiasis. In the macrophage assay, the mutant cells were less resistant to phagocytosis. Moreover, the defects in filament formation were associated with reduced virulence in the mouse model. These results indicate that, in response to environmental cues, CaRas1p is required for the regulation of both a MAP kinase signalling pathway and a cAMP signalling pathway. CaRas1p‐dependent activation of these pathways contributes to the pathogenicity of C. albicans cells through the induction of polarized morphogenesis. These findings elucidate a new medically relevant role for Ras in cellular morphogenesis and virulence in an important human infectious disease.


Molecular Microbiology | 2000

The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans

Anja Schweizer; Steffen Rupp; Brad N. Taylor; Martin Röllinghoff; Klaus Schröppel

The temporal and spatial expression of stage‐specific genes during morphological development of fungi and higher eukaryotes is controlled by transcription factors. In this study, we report the cloning and functional analysis of the Candida albicans TEC1 (CaTEC1) gene, a new member of the TEA/ATTS family of transcription factors that regulates C. albicans virulence. The promoters of the type 4, 5 and 6 proteinase isogenes (SAP4–6) contain repetitive TEA/ATTS consensus sequence motifs. This finding suggests a possible role for a homologue of Saccharomyces cerevisiae TEC1 during the activation of proteinase gene expression in C. albicans. CaTEC1 is predominantly expressed in the hyphal form of C. albicans. In vitro, serum‐induced hyphal formation as well as evasion from MΦ after phagocytosis is suppressed in catec1/catec1 mutant cells. Furthermore, expression of the proteinase isogenes SAP4–6 is no longer inducible in these mutant cells. The deletion of the CaTEC1 gene attenuates virulence of C. albicans in a systemic model of murine candidiasis, although both mutant and revertant cells that were prepared from infected tissues or the vaginal mucosa grew in a hyphal morphology in vivo. CaTEC1 complements the pseudohyphal and invasive growth defect of haploid and diploid S. cerevisiae tec1/tec1 mutant cells and strongly activates the promoter of FLO11, a gene required for pseudohyphal growth. This study provides the first evidence pointing to an essential role for a member of the TEA/ATTS transcription factor family that had so far only been ascribed to function during development as a virulence regulator in microbial pathogenesis.


Molecular Microbiology | 2004

PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance

Stephan K.-H. Prill; Birgit Klinkert; Claudia Timpel; Cheryl A. Gale; Klaus Schröppel; Joachim F. Ernst

Protein O‐mannosyltransferases (Pmt proteins) initiate O‐mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6, as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3‐ or tetOScHOP1‐promoters, was blocked in non‐permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p‐mediated O‐glycosylation for environment‐specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell wall‐destabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans. Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance.


Journal of Bacteriology | 2000

Morphogenesis, Adhesive Properties, and Antifungal Resistance Depend on the Pmt6 Protein Mannosyltransferase in the Fungal Pathogen Candida albicans

Claudia Timpel; Sigrid Zink; Sabine Strahl-Bolsinger; Klaus Schröppel; Joachim F. Ernst

Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterized PMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or two PMT6 alleles grow normally and contain normal Pmt enzymatic activities in cell extracts but show phenotypes including a partial block of hyphal formation (dimorphism) and a supersensitivity to hygromycin B. The morphogenetic defect can be suppressed by overproduction of known components of signaling pathways, including Cek1p, Cph1p, Tpk2p, and Efg1p, suggesting a specific Pmt6p target protein upstream of these components. Mutants lacking both PMT1 and PMT6 are viable and show pmt1 mutant phenotypes and an additional sensitivity to the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The lack of Pmt6p significantly reduces adherence to endothelial cells and overall virulence in a mouse model of systemic infection. The results suggest that Pmt6p regulates a more narrow subclass of proteins in C. albicans than Pmt1p, including secreted proteins responsible for morphogenesis and antifungal sensitivities.


Infection and Immunity | 2003

Calcineurin Is Essential for Virulence in Candida albicans

Teresa Bader; Barbara Bodendorfer; Klaus Schröppel; Joachim Morschhäuser

ABSTRACT Calcineurin is a conserved Ca2+-calmodulin-activated, serine/threonine-specific protein phosphatase that regulates a variety of physiological processes, e.g., cell cycle progression, polarized growth, and adaptation to salt and alkaline pH stresses. In the pathogenic yeast Cryptococcus neoformans, calcineurin is also essential for growth at 37°C and virulence. To investigate whether calcineurin plays a role in the virulence of Candida albicans, the major fungal pathogen of humans, we constructed C. albicans mutants in which both alleles of the CMP1 gene, encoding the calcineurin catalytic subunit, were deleted. The C. albicans Δcmp1 mutants displayed hypersensitivity to elevated Na+, Li+, and Mn2+ concentrations and to alkaline pH, phenotypes that have been described after calcineurin inactivation in the related yeast Saccharomyces cerevisiae. Unlike S. cerevisiae calcineurin mutants, which exhibit reduced susceptibility to high Ca2+ concentrations, growth of C. albicans was inhibited in the presence of 300 mM CaCl2 after the deletion of CMP1, demonstrating that there are also differences in calcineurin-mediated cellular responses between these two yeast species. In contrast to C. neoformans, inactivation of calcineurin did not cause temperature sensitivity in C. albicans. In addition, hyphal growth, an important virulence attribute of C. albicans, was not impaired in the Δcmp1 mutants under a variety of inducing conditions. Nevertheless, the virulence of the mutants was strongly attenuated in a mouse model of systemic candidiasis, demonstrating that calcineurin signaling is essential for virulence in C. albicans.


Journal of Clinical Microbiology | 2003

High Diversity of ankA Sequences of Anaplasma phagocytophilum among Ixodes ricinus Ticks in Germany

Friederike D. von Loewenich; Birgit U. Baumgarten; Klaus Schröppel; Walter Geißdörfer; Martin Röllinghoff; Christian Bogdan

ABSTRACT In Germany humans with acute granulocytic ehrlichiosis have not yet been described. Here, we characterized three different genes of Anaplasma phagocytophilum strains infecting German Ixodes ricinus ticks in order to test whether they differ from strains in other European countries and the United States. A total of 1,022 I. ricinus ticks were investigated for infection with A. phagocytophilum by nested PCR and sequence analysis. Forty-two (4.1%) ticks were infected. For all positive ticks, parts of the 16S rRNA and groESL genes were sequenced. The complete coding sequence of the ankA gene could be determined in 24 samples. The 16S rRNA and groESL gene sequences were as much as 100% identical to known sequences. Fifteen ankA sequences were ≥99.37% identical to sequences derived from humans with granulocytic ehrlichiosis in Europe and from a horse with granulocytic ehrlichiosis in Germany. Thus, German I. ricinus ticks most likely harbor A. phagocytophilum strains that can cause disease in humans. Nine additional sequences were clearly different from known ankA sequences. Because these newly described sequences have never been obtained from diseased humans or animals, their biological significance is currently unknown. Based on this unexpected sequence heterogeneity, we propose to use the ankA gene for further phylogenetic analyses of A. phagocytophilum and to investigate the biology and pathogenicity of strains that differ in the ankA gene.


Infection and Immunity | 2006

Role of Calcineurin in Stress Resistance, Morphogenesis, and Virulence of a Candida albicans Wild-Type Strain

Teresa Bader; Klaus Schröppel; Stefan Bentink; Nina Agabian; Gerwald A. Köhler; Joachim Morschhäuser

ABSTRACT By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.


Molecular Microbiology | 2005

The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans

Constantin F. Urban; Xin Xiong; Kai Sohn; Klaus Schröppel; Herwig Brunner; Steffen Rupp

Candida albicans is one of the most common fungal pathogens in humans. The cell wall is the first contact site between host and pathogen and thus is critical for colonization and infection of the host. We have identified Tsa1p, a protein that is differentially localized to the cell wall of C. albicans in hyphal cells but remains in the cytosol and nucleus in yeast‐form cells. This is different from Saccharomyces cerevisiae, where the homologous protein solely has been found in the cytoplasm. We report here that TSA1 confers resistance towards oxidative stress as well as is involved in the correct composition of hyphal cell walls. However, no significant change of the cell wall composition was observed in a TSA1 deletion strain in yeast‐form cells, which is in good agreement with the observation that Tsa1p is absent from the yeast‐form cell wall. This indicates that Tsa1p of C. albicans might represent a moonlighting protein with specific functions correlating to its respective localization. Furthermore, the translocation of Tsa1p to the hyphal cell wall of C. albicans depends on Efg1p, suggesting a contribution of the cAMP/PKA pathway to the localization of this protein. In a strain deleted for TUP1 that filaments constitutively Tsa1p can be found in the cell wall under all conditions tested, confirming the result that Tsa1p localization to the cell wall is correlated to the morphology of C. albicans.


Infection and Immunity | 2005

Profile of Candida albicans-Secreted Aspartic Proteinase Elicited during Vaginal Infection

Brad N. Taylor; Peter Staib; Ayfer Binder; Antje Biesemeier; Miriam Sehnal; Martin Röllinghoff; Joachim Morschhäuser; Klaus Schröppel

ABSTRACT Vaginal infections caused by the opportunistic yeast Candida albicans are a significant problem in women of child-bearing age. Several factors are recognized as playing a crucial role in the pathogenesis of superficial candidiasis; these factors include hyphal formation, phenotypic switching, and the expression of virulence factors, including a 10-member family of secreted aspartic proteinases. In the present investigation, we analyzed the secreted aspartic proteinase gene (SAP) expression profile of C. albicans that is elicited in the course of vaginal infection in mice and how this in vivo expression profile is associated with hyphal formation. We utilized two different genetic reporter systems that allowed us to observe SAP expression on a single-cell basis, a recombination-based in vivo expression technology and green fluorescent protein-expressing Candida reporter strains. Of the six SAP genes that were analyzed (SAP1 to SAP6), only SAP4 and SAP5 were detectably induced during infection in this model. Expression of both of these genes was associated with hyphal growth, although not all hyphal cells detectably expressed SAP4 and SAP5. SAP5 expression was induced soon after infection, whereas SAP4 was expressed at later times and in fewer cells compared with SAP5. These findings point to a link between morphogenetic development and expression of virulence genes during Candida vaginitis in mice, where host signals induce both hyphal formation and expression of SAP4 and SAP5, but temporal gene expression patterns are ultimately controlled by other factors.


Infection and Immunity | 2000

Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase Cpp1p of Candida albicans is independent of the MAP kinase Cek1p.

Klaus Schröppel; Katrin Sprösser; Malcolm Whiteway; David Y. Thomas; Martin Röllinghoff; Csilla Csank

ABSTRACT Cpp1p is a putative mitogen-activated protein (MAP) kinase phosphatase that suppresses Candida albicans hyphal formation at 25°C through its probable substrate, the Cek1p filamentation MAP kinase. Here we report that expression of the serum-induced genes SAP4-6 and HYR1 increased several fold in hyphal forms of a cpp1/cpp1 null mutant, while the rate and extent of hyphal development up to 5 h were normal. Therefore, we provide evidence that Cpp1p represses hyphal gene expression by acting through a Cek1p-independent mechanism.SAP4-6 and HYR1 transcripts were undetectable in a null mutant of another key regulator of filamentation, Efg1p; thus, Efg1p and Cpp1p oppose each other during the expression of these genes in hyphal forms.

Collaboration


Dive into the Klaus Schröppel's collaboration.

Top Co-Authors

Avatar

Martin Röllinghoff

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Steffen Rupp

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Schweizer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Brad N. Taylor

LSU Health Sciences Center New Orleans

View shared research outputs
Top Co-Authors

Avatar

Christian Bogdan

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Gessner

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge