Klaus Stensgaard Frederiksen
Novo Nordisk
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Stensgaard Frederiksen.
Nucleic Acids Research | 2009
Jesper Worm; Jan Stenvang; Andreas Petri; Klaus Stensgaard Frederiksen; Susanna Obad; Joacim Elmén; Maj Hedtjärn; Ellen M. Straarup; Jens Bo Hansen; Sakari Kauppinen
microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases.
Clinical Cancer Research | 2007
Ian D. Davis; Birte K. Skrumsager; Jonathan Cebon; Theo Nicholaou; John W Barlow; Niels Peter Hundahl Møller; Kresten Skak; Dorthe Lundsgaard; Klaus Stensgaard Frederiksen; Peter Thygesen; Grant A. McArthur
Purpose: Human interleukin-21 (IL-21) is a pleiotropic class I cytokine that activates CD8+ T cells and natural killer cells. We report a phase 1 study of recombinant human IL-21 in patients with surgically incurable metastatic melanoma. The primary objective was to investigate safety and tolerability by determining dose-limiting toxicity (DLT). The secondary objectives were to identify a dose response for various biomarkers in the peripheral blood, estimate the minimum biologically effective dose, determine the pharmacokinetics of IL-21, determine if anti-IL-21 antibodies were induced during therapy, and measure effects on tumor size according to Response Evaluation Criteria in Solid Tumors. Experimental Design: Open-label, two-arm, dose escalation trial of IL-21 administered by i.v. bolus injection at dose levels from 1 to 100 μg/kg using two parallel treatment regimens: thrice weekly for 6 weeks (3/wk) or three cycles of daily dosing for 5 days followed by 9 days of rest (5+9). Results: Twenty-nine patients entered the study. IL-21 was generally well tolerated and no DLTs were observed at the 1, 3, and 10 μg/kg dose levels. In the 3/wk regimen, DLTs were increased in alanine aminotransferase, neutropenia, and lightheadedness with fever and rigors. DLTs in the 5+9 regimen were increased in aspartate aminotransferase and alanine aminotransferase, neutropenia, fatigue, and thrombocytopenia. The maximum tolerated dose was declared to be 30 μg/kg for both regimens. Effects on biomarkers were observed at all dose levels, including increased levels of soluble CD25 and up-regulation of perforin and granzyme B mRNA in CD8+ cells. One partial tumor response observed after treatment with IL-21 for 2 × 6 weeks (3/wk) became complete 3 months later. Conclusions: IL-21 is biologically active at all dose levels administered and is generally well tolerated, and phase 2 studies have commenced using 30 μg/kg in the 5+9 regimen.
Clinical Cancer Research | 2009
Ian D. Davis; Ben Brady; Richard F. Kefford; Michael Millward; Jonathan Cebon; Birte K. Skrumsager; Ulrik Mouritzen; Lasse Hansen; Kresten Skak; Dorthe Lundsgaard; Klaus Stensgaard Frederiksen; Paul E.G. Kristjansen; Grant A. McArthur
Purpose: Human interleukin-21 (IL-21) is a class I cytokine that mediates activation of CD8+ T cells, natural killer (NK) cells, and other cell types. We report final clinical and biological results of a phase II study of recombinant human IL-21 (rIL-21) in patients with metastatic melanoma. Experimental Design: Open-label, single-arm, two-stage trial. Eligibility criteria: unresectable metastatic melanoma, measurable disease by Response Evaluation Criteria in Solid Tumors, no prior systemic therapy (adjuvant IFN permitted), adequate major organ function, good performance status, no significant autoimmune disease, and life expectancy at least 4 months. Primary objective: antitumor efficacy (response rate). Secondary objectives: safety, blood biomarkers, and generation of anti-rIL-21 antibodies. rIL-21 (30 μg/kg/dose) was administered by intravenous bolus injection in 8-week cycles (5 dosing days followed by 9 days of rest for 6 weeks and then 2 weeks off treatment). Results: Stage I of the study comprised 14 patients. One confirmed complete response (CR) was observed, and as per protocol, 10 more patients were accrued to stage II (total n = 24: 10 female and 14 male). Best tumor response included one confirmed CR and one confirmed partial response, both with lung metastases. Treatment was overall well tolerated. Biomarker analyses showed increases in serum soluble CD25, frequencies of CD25+ NK and CD8+ T cells, and mRNA for IFN-γ, perforin, and granzyme B in CD8+ T and NK cells. Conclusions: rIL-21 administered at 30 μg/kg/d in 5-day cycles every second week is biologically active and well tolerated in patients with metastatic melanoma. Confirmed responses, including one CR, were observed.
Diabetes | 2012
Regine Bergholdt; Caroline Brorsson; Albert Pallejà; Lukas Adrian Berchtold; Tina Fløyel; Claus Heiner Bang-Berthelsen; Klaus Stensgaard Frederiksen; Lars Juhl Jensen; Joachim Størling; Flemming Pociot
Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated genes (CD83, IFNGR1, IL17RD, TRAF3IP2, IL27RA, PLCG2, MYO1B, and CXCR7) in these networks also harbored single nucleotide polymorphisms nominally associated with type 1 diabetes. Finally, the expression and cytokine regulation of these new candidate genes were confirmed in insulin-secreting INS-1 β-cells. Our results provide novel insight to the mechanisms behind type 1 diabetes pathogenesis and, thus, may provide the basis for the design of novel treatment strategies.
Immunology | 2008
Kresten Skak; Klaus Stensgaard Frederiksen; Dorthe Lundsgaard
Interleukin (IL)‐21 is a novel cytokine that has been shown to enhance proliferation and activation of CD8+ T cells, enhance natural killer (NK) cell activity and costimulate anti‐CD40‐driven B‐cell proliferation in mice. Several studies have furthermore demonstrated antitumour effects of IL‐21 administration in mouse models. In this study we have investigated how IL‐21 affects the survival and cytotoxicity of human NK cells and modulates their expression of surface receptors and of the effector molecules granzyme B and perforin. In contrast to murine NK cells, where IL‐21 alone cannot sustain survival, IL‐21 and IL‐2 were equally efficient in sustaining survival of human NK cells. In the absence of other cytokines, IL‐21 had little effect on expression of a panel of surface receptors on human NK cells. However, IL‐21 synergized with IL‐2 to up‐regulate several surface receptors, including NKG2A, CD25, CD86 and CD69. The CD25+ CD86+ NK cells were CD56bright and were large and granular. Expression of the effector molecules perforin and granzyme A and B was up‐regulated by IL‐21 at both mRNA and protein levels. Furthermore, IL‐21 increased the cytotoxicity of NK cells against K562 target cells. These findings suggest that IL‐21 modulates NK cell activity through induction of intracellular effector molecules as well as modulation of surface receptor expression.
Cancer Immunology, Immunotherapy | 2007
Henrik Søndergaard; Klaus Stensgaard Frederiksen; Peter Thygesen; Elisabeth Douglas Galsgaard; Kresten Skak; Paul E. G. Kristjansen; Niels Ødum; Michael Kragh
Interleukin (IL)-21 is a recently discovered cytokine in early clinical development, which has shown anti-tumor activity in various animal models. In the present study, we examine the anti-tumor activity of IL-21 protein therapy in two syngeneic tumor models and its effect on the density of tumor infiltrating T cells. We treated mice bearing established subcutaneous B16 melanomas or RenCa renal cell carcinomas with intraperitoneal (i.p.) or subcutaneous (s.c.) IL-21 protein therapy and subsequently scored the densities of tumor infiltrating CD4+ and CD8+ T cells by immunohistochemistry. Whereas both routes of IL-21 administration significantly inhibited growth of small, established RenCa and B16 tumors, only s.c. therapy significantly inhibited the growth of large, established tumors. We found a greater bioavailability and significant drainage of IL-21 to regional lymph nodes following s.c. administration, which could account for the apparent increase in anti-tumor activity. Specific depletion of CD8+ T cells with monoclonal antibodies completely abrogated the anti-tumor activity, whereas NK1.1+ cell depletion did not affect tumor growth. In accordance, both routes of IL-21 administration significantly increased the density of tumor infiltrating CD8+ T cells in both B16 and RenCa tumors; and in the RenCa model s.c. administration of IL-21 led to a significantly higher density of tumor infiltrating CD8+ T cells compared to i.p. administration. The densities of CD4+ T cells were unchanged following IL-21 treatments. Taken together, these data demonstrate that IL-21 protein has anti-tumor activity in established syngeneic tumors, and we show that IL-21 therapy markedly increases the density of tumor infiltrating CD8+ T cells.
Nature Communications | 2014
Hayley G. Evans; Urmas Roostalu; Gina J. Walter; Nicola J. Gullick; Klaus Stensgaard Frederiksen; Ceri A. Roberts; Jonathan Sumner; Dominique Baeten; Jens G. Gerwien; Andrew P. Cope; Frederic Geissmann; Bruce Kirkham; Leonie S. Taams
IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF-inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg/Foxp3 independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterised by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.
Genome Medicine | 2015
Aashiq H. Mirza; Claus Hb Berthelsen; Stefan E. Seemann; Xiaoyong Pan; Klaus Stensgaard Frederiksen; Mogens Vilien; Jan Gorodkin; Flemming Pociot
BackgroundInflammatory bowel disease (IBD) is a complex multi-factorial inflammatory disease with Crohn’s disease (CD) and ulcerative colitis (UC) being the two most common forms. A number of transcriptional profiling studies have provided compelling evidence that describe the role of protein-coding genes and microRNAs in modulating the immune responses in IBD.MethodsIn the present study, we performed a genome-wide transcriptome profiling of lncRNAs and protein-coding genes in 96 colon pinch biopsies (inflamed and non-inflamed) extracted from multiple colonic locations from 45 patients (CD = 13, UC = 20, controls = 12) using an expression microarray platform.ResultsIn our study, we identified widespread dysregulation of lncRNAs and protein-coding genes in both inflamed and non-inflamed CD and UC compared to the healthy controls. In cases of inflamed CD and UC, we identified 438 and 745 differentially expressed lncRNAs, respectively, while in cases of the non-inflamed CD and UC, we identified 12 and 19 differentially expressed lncRNAs, respectively. We also observed significant enrichment (P-value <0.001, Pearson’s Chi-squared test) for 96 differentially expressed lncRNAs and 154 protein-coding genes within the IBD susceptibility loci. Furthermore, we found strong positive expression correlations for the intersecting and cis-neighboring differentially expressed IBD loci-associated lncRNA-protein-coding gene pairs. The functional annotation analysis of differentially expressed genes revealed their involvement in the immune response, pro-inflammatory cytokine activity and MHC protein complex.ConclusionsThe lncRNA expression profiling in both inflamed and non-inflamed CD and UC successfully stratified IBD patients from the healthy controls. Taken together, the identified lncRNA transcriptional signature along with clinically relevant parameters suggest their potential as biomarkers in IBD.
Endocrine-related Cancer | 2010
Louise Maymann Rasmussen; Klaus Stensgaard Frederiksen; Nanni Din; Elisabeth Douglas Galsgaard; Leif Christensen; Martin W. Berchtold; Svetlana Panina
The pituitary hormone prolactin (PRL) plays an important role in mammary gland development. It was also suggested to contribute to breast cancer progression. In vivo data strongly supported a crucial role of PRL in promoting tumour growth; however, PRL demonstrated only a weak, if any, pro-proliferative effect on cancer cells in vitro. Several recent studies indicated that PRL action in vivo may be influenced by the hormonal milieu, e.g. other growth factors such as 17beta-oestradiol (E(2)). Here, we explored the potential interplay between PRL and E(2) in regulation of gene expression and cell growth. PRL alone induced either a weak or no proliferative response of T47D and BT-483 cells respectively, while it drastically enhanced cell proliferation in E(2)-stimulated cultures. Affymetrix microarray analysis revealed 12 genes to be regulated by E(2), while 57 genes were regulated by PRL in T47D cells. Most of the PRL-regulated genes (42/57) were not previously described as PRL target genes, e.g. WT1 and IER3. One hundred and five genes were found to be regulated upon PRL/E(2) co-treatment: highest up-regulation was found for EGR3, RUNX2, EGR1, MAFF, GLIPR1, IER3, SOCS3, WT1 and AREG. PRL and E(2) synergised to regulate EGR3, while multiple genes were regulated additively. These data show a novel interplay between PRL and E(2) to modulate gene regulation in breast cancer cells.
Cancer Gene Therapy | 2000
Klaus Stensgaard Frederiksen; Niels Abrahamsen; Richard J. Cristiano; L. Damstrup; Hans Skovgaard Poulsen
In the present study, we wanted to determine whether efficient gene delivery using an epidermal growth factor (EGF)/DNA polyplex could be accomplished in small cell lung cancer (SCLC) cell lines expressing low EGF receptor (EGFR) levels. EGFR expression levels and transduction efficiencies with polyplexes were examined in five SCLC cell lines and two controls. EGFR expression was examined by binding assays and demonstrated low EGFR levels ranging from 3.6 to 87.4 fmol/mg protein. The SCLC cell lines exhibited high sensitivity to adenovirus infection, which was an important determinant for transduction efficiency when adenovirus was used as an endosomolytic agent. The transduction efficiencies with EGF/DNA polyplexes ranged from 41% ± 3.5% to 73% ± 4.6% in the EGFR-positive SCLC cell lines. In the controls lacking EGFRs, only 5% ± 1.0% and 8% ± 1.8% of the cells were transduced. Furthermore, the transduction efficiency could be reduced from 50% ± 4.9% to 18% ± 1.1% when excess EGF was added to compete with the EGF/DNA polyplexes. In the present study, receptor-targeted gene delivery to SCLC cell lines has been demonstrated for the first time. Our results indicate that even low receptor expression levels in the target cells are sufficient for efficient and specific in vitro gene delivery with EGF/DNA polyplexes.