Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Knut-Erik Tollefsen is active.

Publication


Featured researches published by Knut-Erik Tollefsen.


Chemosphere | 2008

Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS).

Christopher Harman; Knut-Erik Tollefsen; Olav Bøyum; Kevin V. Thomas; Merete Grung

Passive sampling devices provide a useful contribution to the monitoring of contaminants in the aquatic environment. However, calibration data needed for the calculation of water concentrations from sampler accumulations are restricted to a limited number of compound classes. Thus uptake of a range of alkylated phenols (AP), polycyclic aromatic hydrocarbons (PAH) and carbazoles was determined for semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) using a flow through exposure system. Sampling rates ranged from 0.02 to 0.26 l d(-1) for POCIS and 0.02 to 13.83 l d(-1) for SPMDs. Observed SPMD uptake was also compared to that predicted by an empirical model including the use of performance reference compounds (PRCs). Predicted sampling rates did not differ by more than a factor of 1.3 from experimental values for PAH, providing further evidence that the PRC approach can be successfully used to determine in situ sampling rates for these compounds. Experimental sampling rates for AP in SPMDs were, however, much lower than predicted. This discrepancy was too large to be explained by small uncertainties in the calibration system or in the calculations. Based on these data we conclude that while hydrophobic AP are accumulated by SPMDs their partitioning cannot be predicted from their logK(ow) using current methods. Due to this lower than expected uptake, sampling rates were only higher in SPMDs than POCIS in the range of logK(ow)>5.0. Simultaneous deployment of both sampler types allows the study of compounds with a broad range of physicochemical properties.


The Journal of Experimental Biology | 2006

Effects of hypo- and hyperoxia on transcription levels of five stress genes and the glutathione system in liver of Atlantic cod Gadus morhua

Pål A. Olsvik; T. Kristensen; Rune Waagbø; Knut-Erik Tollefsen; Bjørn Olav Rosseland; H. Toften

SUMMARY The transcript levels of three genes coding for antioxidants, Cu/Zn superoxide dismutase (SOD), catalase and phospholipid hydroperoxide glutathione peroxidase (GSH-Px), and those of two stress proteins, metallothionein (MT) and CYP1A, were examined with real-time quantitative (q) RT-PCR in hepatic tissue of Atlantic cod exposed to 46% (hypoxia), 76% (normoxia) and 145% (hyperoxia) O2 saturation (tank outlet). To evaluate the oxidative stress state, the levels of total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) and subsequently the oxidative stress index (OSI), were determined in the same tissue samples. The transcript level of GSH-Px was significantly upregulated in fish exposed to hyperoxia, and significantly downregulated in fish exposed to hypoxia, compared to the normoxia group. Significant downregulation was also found for SOD and CYP1A transcriptional levels in fish exposed to hypoxia. The transcript levels of catalase and MT did not change in liver of cod exposed to suboptimal oxygen levels. No significant differences were seen between the groups for tGSH, GSH, GSSG or OSI. Prolonged exposure to unfavourable oxygen saturation levels did not alter the OSI, indicating that the antioxidant glutathione system is maintained at an unchanged level in liver of the examined cod.


Aquatic Toxicology | 2007

Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology

Chris N. Glover; Dietrich Petri; Knut-Erik Tollefsen; Nanne Jørum; Richard D. Handy; Marc H.G. Berntssen

The incorporation of plant-based ingredients, and the possible carry-over of pesticides such as endosulfan, in fish feeds may present new toxicological challenges to aquacultural species. Biological responses of Atlantic salmon (Salmo salar) to a 35-day dietary endosulfan exposure at levels ranging from 4 to 710 microgkg(-1) were assessed using tissue histology and biochemistry. Liver 7-ethoxyresorufin-O-deacetylase (EROD) activity was significantly elevated in the highest exposure group (710 microgkg(-1)) by day 35. Other hepatic indicators of stress impacts and responses (glutathione-S-transferase and glutathione peroxidase activities and hepatic alpha-tocopherol content) remained unchanged. Branchial Na(+), K(+)-ATPase activity was significantly reduced at day 14 in the highest exposure group, but returned to control levels by day 35. Conversely, intestinal Na(+), K(+)-ATPase activity was significantly inhibited at day 35, but again only at the highest exposure level. In contrast to the biochemical results, hepatic and intestinal histology revealed effects of exposure even at the lowest dose tested (4 microgkg(-1)). In the posterior intestine, pathology was characterised by vacuolation and fusion of villi, and in the most severe cases, loss of epithelial integrity in villi tips. In the liver the primary effects were glycogen depletion and lipidosis. These changes were typical of a generalised stress response. While histology endpoints may prove to be the most sensitive indicators of dietary endosulfan exposure, the organismal relevance of these structural changes must be considered in the absence of effects in other biomarkers at dietary levels less than 710 microgkg(-1).


Science of The Total Environment | 2009

Speciation of lead, copper, zinc and antimony in water draining a shooting range—Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.)

Lene Sørlie Heier; Ivar B. Lien; Arnljot Einride Strømseng; Marita Ljønes; Bjørn Olav Rosseland; Knut-Erik Tollefsen; Brit Salbu

The speciation of Pb, Cu, Zn and Sb in a shooting range run-off stream were studied during a period of 23 days. In addition, metal accumulation in gills and liver, red blood cell ALA-D activity, hepatic metallothionine (Cd/Zn-MT) and oxidative stress index (GSSG/ tGSH levels) in brown trout (Salmo trutta L.) exposed to the stream were investigated. Fish, contained in cages, were exposed and sampled after 0, 2, 4, 7, 9, 11 and 23 days of exposure. Trace metals in the water were fractionated in situ according to size (nominal molecular mass) and charge properties. During the experimental period an episode with higher runoff occurred resulting in increased levels of metals in the stream. Pb and Cu were mainly found as high molecular mass species, while Zn and Sb were mostly present as low molecular mass species. Pb, Cu and Sb accumulated on gills, in addition to Al origination from natural sources in the catchment. Pb, Cu and Sb were also detected at elevated concentration in the liver. Blood glucose and plasma Na and Cl levels were significantly altered during the exposure period, and are attributed to elevated concentrations of Pb, Cu and Al. A significant suppression of ALA-D was detected after 11 days. Significant differences were detected in Cd/Zn-MT and oxidative stress (tGSH/GSSG) responses at Day 4. For Pb the results show a clear link between the HMM (high molecular mass) positively charged Pb species, followed by accumulation on gills and liver and a suppression in ALA-D. Thus, high flow episodes can remobilise metals from the catchment, inducing stress to aquatic organisms.


Ecotoxicology and Environmental Safety | 2008

Estrogenicity of alkylphenols and alkylated non-phenolics in a rainbow trout (Oncorhynchus mykiss) primary hepatocyte culture.

Knut-Erik Tollefsen; Sissel Eikvar; Eivind Farmen Finne; Oscar Fogelberg; Inger Katharina Gregersen

Alkylphenols act as estrogen mimics by binding to and transactivating estrogen receptors (ERs) in fish. In the present study, activation of ER-mediated production of the estrogenic biomarker vitellogenin (vtg) in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes was used to construct a structure-activity relationship for this ubiquitous group of aquatic pollutants. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure was assessed. The results showed that most alkylphenols were estrogenic, although with 3-300 thousand times lower affinity than the endogenous estrogen 17beta-estradiol. Mono-substituted tertiary alkylphenols with moderate (C4-C5) and long alkyl chain length (C8-C9) in the para position exhibited the highest estrogenic potency. Substitution with multiple alkyl groups, presence of substituents in the ortho- and meta-position and lack of a hydroxyl group on the benzene ring reduced the estrogenic activity, although several estrogenic alkylated non-phenolics were identified. Co-exposures with the natural estrogen 17beta-estradiol led to identification of additional estrogenic compounds as well as some anti-estrogens. A combination of low affinity for the ER and cytotoxicity was identified as factors rendering some of the alkylphenols non-estrogenic in the bioassay when tested alone.


Journal of Toxicology and Environmental Health | 2011

Endocrine Modulation in Atlantic Cod (Gadus morhua L.) Exposed to Alkylphenols, Polyaromatic Hydrocarbons, Produced Water, and Dispersed Oil

Knut-Erik Tollefsen; Rolf C. Sundt; Jonny Beyer; Sonnich Meier; Ketil Hylland

Effluent from oil production activities contains chemicals that are suspected of inducing endocrine disruption in fish. In this study, Atlantic cod (Gadus morhua L.) were exposed to mixtures of low- and medium-molecular-weight alkylphenols (AP) (methyl- to heptylphenol), polycyclic aromatic hydrocarbons (PAH), diluted produced water, and dispersed oil for 15 d in a flow-through exposure system. Condition index (CI), hepatosomatic index (HSI), gonadosomatic index (GSI), concentration of the estrogenic biomarker vitellogenin (Vtg), and modulation of the total sex steroid-binding capacity in plasma were determined to assess whether these mixtures were capable of interfering with endocrine-regulated physiological processes in Atlantic cod. No marked differences in plasma Vtg levels were found between control and exposed groups of either males or females, possibly due to high intergroup variances and low sample numbers. An apparent numerical increase in the number of male and female fish with high plasma Vtg levels was, however, observed in some exposure groups compared to control. This purported weak estrogenic effect was several orders of magnitude lower than that observed for potent estrogens and suggested that the levels of estrogen receptor (ER) agonists were low. Exposure of female fish to a mixture of dispersed oil and a mixture of AP, PAH, and dispersed oil led to upregulation of the plasma total sex steroid-binding capacity, indicating interference with the normal blood steroid transport. No significant effects were seen for CI, HSI, and GSI, suggesting that the endocrine-disrupting potential was not sufficient to elicit effects on general physiological conditions and gonad development during this short exposure period.


Environmental Science and Pollution Research | 2013

Prioritisation of organic contaminants in a river basin using chemical analyses and bioassays

Tvrtko Smital; Senka Terzić; Jovica Lončar; Ivan Senta; Roko Žaja; Marta Popović; Iva Mikac; Knut-Erik Tollefsen; Kevin V. Thomas; Marijan Ahel

Region-specific contaminant prioritisation is an important prerequisite for sustainable and cost-effective monitoring due to the high number of different contaminants that may be present. Surface water and sediment samples from the Sava River, Croatia, were collected at four locations covering a 150-km-long river section characterised by well-defined pollution gradients. Analysis of contaminant profiles along the pollution gradients was performed by combining toxicity screening using a battery of small-scale or in vitro bioassays, which covered different modes of action, with detailed chemical characterisation based on gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). A large number of contaminants, belonging to different toxicant classes, were identified in both analysed matrices. Analyses of water samples showed that contaminants having polar character occurred in the highest concentrations, while in sediments, contributions from both non-polar and amphiphilic contaminants should be taken into account. Estimated contributions of individual contaminant classes to the overall toxicity indicated that, besides the classical pollutants, a number of emerging contaminants, including surfactants, pharmaceuticals, personal care products and plasticizers, should be taken into consideration in future monitoring activities. This work demonstrates the importance of the integrated chemical and bioanalytical approach for a systematic region-specific pollutant prioritisation. Finally, the results presented in this study confirm that hazard assessment in complex environmental matrices should be directed towards identification of key pollutants, rather than focusing on a priori selected contaminants alone.


Marine Pollution Bulletin | 2010

Produced water extracts from North Sea oil production platforms result in cellular oxidative stress in a rainbow trout in vitro bioassay

E. Farmen; Christopher Harman; Ketil Hylland; Knut-Erik Tollefsen

Produced water (PW) discharged from offshore oil industry contains chemicals known to contribute to different mechanisms of toxicity. The present study aimed to investigate oxidative stress and cytotoxicity in rainbow trout primary hepatocytes exposed to the water soluble and particulate organic fraction of PW from 10 different North Sea oil production platforms. The PW fractions caused a concentration-dependent increase in reactive oxygen species (ROS) after 1h exposure, as well as changes in levels of total glutathione (tGSH) and cytotoxicity after 96 h. Interestingly, the water soluble organic compounds of PW were major contributors to oxidative stress and cytotoxicity, and effects was not correlated to the content of total oil in PW. Bioassay effects were only observed at high PW concentrations (3-fold concentrated), indicating that bioaccumulation needs to occur to cause similar short term toxic effects in wild fish.


Aquatic Toxicology | 2012

Acetylcholine esterase inhibitors in effluents from oil production platforms in the North Sea.

Tor Fredrik Holth; Knut-Erik Tollefsen

Inhibition of acetylcholine esterase (AChE) activity is a biomarker for the exposure to neurotoxic compounds such as organophosphates and is intimately associated with the toxicity of several pesticides. In the present study, the AChE inhibiting potential of organic extracts of production water (produced water) from oil and gas production platforms in the Norwegian sector of the North Sea was determined in an in vitro bioassay based on commercially available purified AChE from the electric organ of Electrophorus electricus (L.). The results from the studies show that produced water contains a combination of AChE inhibiting compounds and compounds stimulating AChE enzymatic activity. The AChE inhibition was predominantly caused by unidentified aromatic compounds in the oil/particulate fraction of produced water, whereas polar compounds in both the water soluble and oil/particulate fraction of produced water caused an apparent stimulation of AChE activity. Substrate saturation studies with fixed concentrations of produced water extracts confirmed that the inhibition occurred in a non-destructive and competitive manner. The concentrations of AChE inhibitors (7.9-453 ng paraoxon-equivalents L⁻¹, 2.2-178 μg dichlorvos-equivalents L⁻¹) were in many cases found to be several orders of magnitude higher than background levels. The findings demonstrate that produced water contains potentially neurotoxic compounds and suggest that further laboratory studies with fish or field studies in the vicinity of oil production facilities are highly warranted.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010

Oxidative stress responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to pro-oxidants and a complex environmental sample.

E. Farmen; Pål A. Olsvik; Marc H.G. Berntssen; Ketil Hylland; Knut-Erik Tollefsen

A wide range of pollutants in the aquatic environment have the capacity to induce toxic effects expressed as cellular oxidative stress. In the current study, the potential of an in vitro toxicity testing system was therefore investigated using rainbow trout (Oncorhynchus mykiss) hepatocytes to assess different endpoints of oxidative stress. The pro-oxidants CuSO(4) and paraquat were used as models for comparison to a complex environmental sample. Results following 6, 24, 48 and 96h exposure to different concentrations of these substances show cellular effects on intracellular ROS formation, glutathione levels and redox status, expression of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, gamma-glutamyl-cysteine synthetase (GCS) and thioredoxin, as well as cytotoxicity parameters. The most consistent effects (maximum values within brackets), observed in dose and time parameters for both model compounds and environmental sample, were the depletion of total glutathione (9.4% of control), induced levels of oxidized glutathione (695% of control), and gene expression regulation depicted relative to the control gene beta-actin of GCS mRNA (239% of control) and catalase (29% of control). In conclusion, the responses on several antioxidant defence system parameters demonstrated the validity of the in vitro toxicity testing system. Not only could multiple effects be detected at sub-lethal exposure concentrations, but these effects also gave valuable insight to the toxic mechanisms at the molecular level.

Collaboration


Dive into the Knut-Erik Tollefsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Petersen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Inger Katharina Gregersen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Bjørn Olav Rosseland

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Cecilie Sandberg

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Christopher Harman

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Katherine Langford

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Olav Bøyum

Norwegian Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge