Knut Jørgen Måløy
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Knut Jørgen Måløy.
Transport in Porous Media | 1998
Eyvind Aker; Knut Jørgen Måløy; Alex Hansen; G. G. Batrouni
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w ∝ tβ h(t/ts). The dynamical exponent, β, describing the front width evolution as function of time, was estimated to β = 1.0. The results are compared to experimental data of Frette and co-workers.
Physical Review E | 2004
Grunde Løvoll; Yves Méheust; Renaud Toussaint; Jean Schmittbuhl; Knut Jørgen Måløy
We present in this paper an experimental study of the invasion activity during unstable drainage in a two-dimensional random porous medium, when the (wetting) displaced fluid has a high viscosity with respect to that of the (nonwetting) displacing fluid, and for a range of almost two decades in capillary numbers corresponding to the transition between capillary and viscous fingering. We show that the invasion process takes place in an active zone within a characteristic screening length lambda from the tip of the most advanced finger. The invasion probability density is found to only depend on the distance z to the latter tip and to be independent of the value for the capillary number Ca. The mass density along the flow direction is related analytically to the invasion probability density, and the scaling with respect to the capillary number is consistent with a power law. Other quantities characteristic of the displacement process, such as the speed of the most advanced finger tip or the characteristic finger width, are also consistent with power laws of the capillary number. The link between the growth probability and the pressure field is studied analytically and an expression for the pressure in the defending fluid along the cluster is derived. The measured pressure is then compared with the corresponding simulated pressure field using this expression for the boundary condition on the cluster.
Nature Communications | 2011
Bjornar Sandnes; Eirik G. Flekkøy; Henning Arendt Knudsen; Knut Jørgen Måløy; H See
Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams.
Physical Review E | 1998
Eyvind Aker; Knut Jørgen Måløy; Alex Hansen
We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.
EPL | 2005
Renaud Toussaint; Grunde Løvoll; Yves Méheust; Knut Jørgen Måløy; Jean Schmittbuhl
We study viscous fingering during drainage experiments in linear Hele-Shaw cells filled with a random porous medium. The central zone of the cell is found to be statistically more occupied than the average, and to have a lateral width of 40% of the system width, irrespectively of the capillary number Ca. A crossover length wf Ca−1 separates lower scales where the invaders fractal dimension D 1.83 is identical to capillary fingering, and larger scales where the dimension is found to be D 1.53. The lateral width and the large-scale dimension are lower than the results for Diffusion Limited Aggregation, but can be explained in terms of Dielectric Breakdown Model. Indeed, we show that when averaging over the quenched disorder in capillary thresholds, an effective law v (∇P)2 relates the average interface growth rate and the local pressure gradient.
Physical Review E | 2007
Stéphane Santucci; Knut Jørgen Måløy; Arnaud Delaplace; Joachim Mathiesen; Alex Hansen; Jan Øistein Haavig Bakke; Jean Schmittbuhl; Loïc Vanel; Purusattam Ray
We analyze the statistical distribution function for the height fluctuations of brittle fracture surfaces using extensive experimental data sampled on widely different materials and geometries. We compare a direct measurement of the distribution to an analysis based on the structure functions. For length scales delta larger than a characteristic scale Lambda that corresponds to a material heterogeneity size, we find that the distribution of the height increments Deltah=h(x+delta)-h(x) is Gaussian and monoaffine, i.e., the scaling of the standard deviation sigma is proportional to delta(zeta) with a unique roughness exponent. Below the scale Lambda we observe a deviation from a Gaussian distribution and a monoaffine behavior. We discuss for the latter, the relevance of a multiaffine analysis and the influences of the discreteness resulting from material microstructures or experimental sampling.
EPL | 2000
Eyvind Aker; Knut Jørgen Måløy; Alex Hansen; Soumen Basak
We investigate the burst dynamics during drainage going from low to high injection rate at various fluid viscosities. The bursts are identified as pressure drops in the pressure signal across the system. We find that the statistical distribution of pressure drops scales according to other systems exhibiting self-organized criticality. The pressure signal was calculated by a network model that properly simulates drainage displacements. We compare our results with corresponding experiments.
EPL | 2006
Jon Otto Fossum; Yves Méheust; K. P. S. Parmar; Kenneth D. Knudsen; Knut Jørgen Måløy; Davi de Miranda Fonseca
Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing i) homogenizing entropy and ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.
Physical Review Letters | 2007
Jan Ludvig Vinningland; Øistein Johnsen; Eirik G. Flekkøy; Renaud Toussaint; Knut Jørgen Måløy
A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.
EPL | 2010
Stéphane Santucci; M. Grob; Renaud Toussaint; Jean Schmittbuhl; Alex Hansen; Knut Jørgen Måløy
Using a multi-resolution technique, we analyze large in-plane fracture fronts moving slowly between two sintered Plexiglas plates. We find that the roughness of the front exhibits two distinct regimes separated by a crossover length scale