Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Knut P. Lehre is active.

Publication


Featured researches published by Knut P. Lehre.


Neuron | 1995

GLUTAMATE TRANSPORTERS IN GLIAL PLASMA MEMBRANES : HIGHLY DIFFERENTIATED LOCALIZATIONS REVEALED BY QUANTITATIVE ULTRASTRUCTURAL IMMUNOCYTOCHEMISTRY

Farrukh A. Chaudhry; Knut P. Lehre; Menno van Lookeren Campagne; Ole Petter Ottersen; Niels C. Danbolt; Jon Storm-Mathisen

The glutamate transporters GLT-1 and GLAST were studied by immunogold labeling on ultrathin sections of rat brain tissue embedded in acrylic resins at low temperature after freeze substitution. Both proteins were selective markers of astrocytic plasma membranes. GLT-1 was much higher in hippocampal astrocytes than in cerebellar astrocytes. Astroglial membrane GLAST densities ranked as follows: Bergmann > cerebellar granular layer approximately hippocampus > cerebellar white matter. No astrocyte appeared unlabeled. Astrocytic membranes facing capillaries, pia, or stem dendrites were lower in glutamate transporters than those facing nerve terminals, axons, and spines. Parallel fiber boutons (glutamatergic) synapsin on interneuron dendritic shafts were surrounded by lower transporter densities than those synapsing on Purkinje cell spines. Our findings suggest the localizations of glutamate transporters are carefully regulated.


Journal of Biological Chemistry | 1996

Brain Glutamate Transporter Proteins Form Homomultimers

Øyvind Haugeto; Kyrre Ullensvang; Line M. Levy; Farrukh A. Chaudhry; Tage Honore; Mogens M. Nielsen; Knut P. Lehre; Niels C. Danbolt

Removal of excitatory amino acids from the extracellular fluid is essential for synaptic transmission and for avoiding excitotoxicity. The removal is accomplished by glutamate transporters located in the plasma membranes of both neurons and astroglia. The uptake system consists of several different transporter proteins that are carefully regulated, indicating more refined functions than simple transmitter inactivation. Here we show by chemical cross-linking, followed by electrophoresis and immunoblotting, that three rat brain glutamate transporter proteins (GLAST, GLT and EAAC) form homomultimers. The multimers exist not only in intact brain membranes but also after solubilization and after reconstitution in liposomes. Increasing the cross-linker concentration increased the immunoreactivity of the bands corresponding to trimers at the expense of the dimer and monomer bands. However, the immunoreactivities of the dimer bands did not disappear, indicating a mixture of dimers and trimers. GLT and GLAST do not complex with each other, but as demonstrated by double labeling post-embedding electron microscopic immunocytochemistry, they co-exist side by side in the same astrocytic cell membranes. The oligomers are held together noncovalently in vivo. In vitro, oxidation induces formation of covalent bonds (presumably -S-S-) between the subunits of the oligomers leading to the appearance of oligomer bands on SDS-polyacrylamide gel electrophoresis. Immunoprecipitation experiments suggest that GLT is the quantitatively dominant glutamate transporter in the brain. Radiation inactivation analysis gives a molecular target size of the functional complex corresponding to oligomeric structure. We postulate that the glutamate transporters operate as homomultimeric complexes.


Glia | 2010

The Perivascular Astroglial Sheath Provides a Complete Covering of the Brain Microvessels: An Electron Microscopic 3D Reconstruction

Thomas Misje Mathiisen; Knut P. Lehre; Niels C. Danbolt; Ole Petter Ottersen

The unravelling of the polarized distribution of AQP4 in perivascular astrocytic endfeet has revitalized the interest in the role of astrocytes in controlling water and ion exchange at the brain–blood interface. The importance of the endfeet is based on the premise that they constitute a complete coverage of the vessel wall. Despite a number of studies based on different microscopic techniques this question has yet to be resolved. We have made an electron microscopic 3D reconstruction of perivascular endfeet in CA1 (stratum moleculare) of rat hippocampus. The endfeet interdigitate and overlap, leaving no slits between them. Only in a few sites do processes—tentatively classified as processes of microglia—extend through the perivascular glial sheath to establish direct contact with the endothelial basal lamina. In contrast to the endfoot covering of the endothelial tube, the endfoot covering of the pericyte is incomplete, allowing neuropil elements to touch the basal lamina that enwraps this type of cell. The 3D reconstruction also revealed large bundles of mitochondria in the endfoot processes that came in close apposition to the perivascular endfoot membrane. Our data support the idea that in pathophysiological conditions, the perivascular astrocytic covering may control the exchange of water and solutes between blood and brain and that free diffusion is limited to narrow clefts between overlapping endfeet.


European Journal of Neuroscience | 1997

Differential Developmental Expression of the Two Rat Brain Glutamate Transporter Proteins GLAST and GLT

Kyrre Ullensvang; Knut P. Lehre; Jon Storm-Mathisen; Niels C. Danbolt

The extracellular concentration of the excitatory neurotransmitter glutamate is kept low by the action of glutamate transporters in the plasma membranes of both neurons and glial cells. These transporters may play important roles, not only in the adult brain, but also in the developing brain, as glutamate is thought to modulate the formation and elimination of synapses as well as neuronal migration, proliferation and apoptosis. Here we demonstrate the developmental changes in the expression of two glutamate transporters, GLAST and GLT, by quantitative immunoblotting and by light and electron microscopic immunocytochemistry. At birth, GLT is not detectable, but GLAST is present at significant concentrations both in the forebrain and in the cerebellum. GLT is first detected in the forebrain and cerebellum in the second and third week, respectively. Both transporters reach adult levels by postnatal week 5. The development of the total glutamate uptake activity in the forebrain, as determined by solubilization and reconstitution of the transporters in liposomes, parallels that of GLT, in agreement with the observation that GLT is the predominant transporter in the adult brain. The regional distributions of both GLAST and GLT in the tissue are similar in young and adult rats. Only GLAST is detectable in the external germinal layer of the cerebellar cortex. Electron microscopical investigation demonstrated GLAST and GLT exclusively in glial cells in young as well as in adult animals.


Neuroscience | 2008

A QUANTITATIVE ASSESSMENT OF GLUTAMATE UPTAKE INTO HIPPOCAMPAL SYNAPTIC TERMINALS AND ASTROCYTES : NEW INSIGHTS INTO A NEURONAL ROLE FOR EXCITATORY AMINO ACID TRANSPORTER 2 (EAAT2)

David N. Furness; Yvette Dehnes; A.Q. Akhtar; David J. Rossi; Martine Hamann; Nina Julie Grutle; Vidar Gundersen; Silvia Holmseth; Knut P. Lehre; Kyrre Ullensvang; M. Wojewodzic; Yun Zhou; David Attwell; Niels C. Danbolt

The relative distribution of the excitatory amino acid transporter 2 (EAAT2) between synaptic terminals and astroglia, and the importance of EAAT2 for the uptake into terminals is still unresolved. Here we have used antibodies to glutaraldehyde-fixed d-aspartate to identify electron microscopically the sites of d-aspartate accumulation in hippocampal slices. About 3/4 of all terminals in the stratum radiatum CA1 accumulated d-aspartate-immunoreactivity by an active dihydrokainate-sensitive mechanism which was absent in EAAT2 glutamate transporter knockout mice. These terminals were responsible for more than half of all d-aspartate uptake of external substrate in the slices. This is unexpected as EAAT2-immunoreactivity observed in intact brain tissue is mainly associated with astroglia. However, when examining synaptosomes and slice preparations where the extracellular space is larger than in perfusion fixed tissue, it was confirmed that most EAAT2 is in astroglia (about 80%). Neither d-aspartate uptake nor EAAT2 protein was detected in dendritic spines. About 6% of the EAAT2-immunoreactivity was detected in the plasma membrane of synaptic terminals (both within and outside of the synaptic cleft). Most of the remaining immunoreactivity (8%) was found in axons where it was distributed in a plasma membrane surface area several times larger than that of astroglia. This explains why the densities of neuronal EAAT2 are low despite high levels of mRNA in CA3 pyramidal cell bodies, but not why EAAT2 in terminals account for more than half of the uptake of exogenous substrate by hippocampal slice preparations. This and the relative amount of terminal versus glial uptake in the intact brain remain to be discovered.


European Journal of Neuroscience | 1995

Down-regulation of Glial Glutamate Transporters after Glutamatergic Denervation in the Rat Brain

Line M. Levy; Knut P. Lehre; S. I. Walaas; Jon Storm-Mathisen; Niels C. Danbolt

Membrane‐localized transporter proteins, expressed in both neurons and glial cells, are responsible for removal of extracellular glutamate in the mammalian CNS. The amounts and activities of these transporters may be under regulatory control. We demonstrate here that cortical lesions, which decrease striatal glutamate uptake in synaptosome‐containing homogenates by ∼50%, also decrease the striatal concentrations of the astrocytic glutamate transporter proteins, GLT‐1 and GLAST by ∼20–30%. Since GABA uptake activity was not decreased and glial fibrillary acidic protein was increased in the same samples, the lesion‐induced losses of GLT‐1 and GLAST were not caused by a general impairment of neuronal or glial function. The observed reduction in the two astrocytic glutamate transporters after corticostriatal nerve terminal degeneration indicates that their levels of expression are dependent on glutamatergic innervation.


Progress in Brain Research | 1998

Chapter 3 Properties and localization of glutamate transporters

Niels C. Danbolt; Farrukh A. Chaudhry; Yvette Dehnes; Knut P. Lehre; Line M. Levy; Kyrre Ullensvang; Jon Storm-Mathisen

Publisher Summary The glutamate transporters in the plasma membranes of astrocytes and neurons are essential for the normal functioning of the nervous system. They represent the only mechanism capable of quickly removing glutamate from the extracellular fluid. It is important to maintain a low concentration of glutamate extracellularly for two reasons. First, glutamate is the major excitatory neurotransmitter and a high signal-to-noise ratio requires the removal of extracellular glutamate so that the concentration fluctuates with synaptic release. Second, glutamate is highly toxic to neurons expressing glutamate receptors and glutamate receptors are found on most neurons and even on many glial cells. There is experimental evidence for the idea that the transporters may be actively involved in the regulation of synaptic transmission because they can modify the time course of synaptic events. The sodium-dependent glutamate transporters use the transmembrane gradients of sodium, potassium, and pH as driving forces.


The Journal of Neuroscience | 2012

The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS.

Silvia Holmseth; Yvette Dehnes; Yanhua H. Huang; Virginie Follin-Arbelet; Nina Julie Grutle; Maria N. Mylonakou; Céline Plachez; Yun Zhou; David N. Furness; Dwight E. Bergles; Knut P. Lehre; Niels C. Danbolt

The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules μm−3), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-d-aspartate (4-methoxy-7-nitroindolinyl-d-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and d-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.


FEBS Letters | 1993

A monoclonal antibody raised against an [Na+K+]coupled l‐glutamate transporter purified from rat brain confirms glial cell localization

Line M. Levy; Knut P. Lehre; Bent Rolstad; Niels C. Danbolt

A monoclonal antibody (9C4) shows that an [Na+K+]coupled glutamate transporter protein purified from rat brain runs electrophoretically as a wide band and is localized in neuroglial cell bodies and processes, but not in neurons. This confirms the findings with polyclonal antibodies [Neuroscience 51 (1992) 295‐310], and shows that the apparent heterogeneity in relative molecular mass is accounted for by a single antigenic epitope. By testing several synthetic peptides derived from the deduced amino acid sequences of two cloned rat brain glutamate transporters, the antigenic epitope was identified as residing within the peptide TQSVYDDTKNHRESNSNQC (residues 518–536) of one of these [Nature 360 (1992) 464‐467].


Brain Research | 1997

Localization of the glutamate transporter protein GLAST in rat retina

Knut P. Lehre; Svend Davanger; Niels C. Danbolt

Glutamate is a neurotransmitter in retina. Glutamate transporter proteins keep the resting extracellular glutamate concentration low. This is required for normal neurotransmission and prevents the extracellular concentration of glutamate from reaching toxic levels. Here we describe the light and electron microscopic localization of the glutamate transporter protein GLAST in rat retina using an antibody raised and affinity purified against a peptide corresponding to amino acid residues 522-541. The strongest immunocytochemical labelling was observed in the outer plexiform layer, ganglion cell layer, and optic disc. GLAST was found in Müller cell processes in all retinal layers, notably ensheathing the photoreceptor terminals in the outer plexiform layer, and in astrocytes close to vessels in the inner retina and optic disc. No labelling was observed in neurons. The electrophoretic mobility of GLAST in retina was similar to that in cerebellum. In conclusion, the findings are in agreement with those reported by Derouiche and Rauen [7], except that we did not detect any GLAST in the retinal pigment epithelium.

Collaboration


Dive into the Knut P. Lehre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge