Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ko Shimamoto is active.

Publication


Featured researches published by Ko Shimamoto.


Science | 2007

Hd3a Protein Is a Mobile Flowering Signal in Rice

Shojiro Tamaki; Shoichi Matsuo; Hann Ling Wong; Shuji Yokoi; Ko Shimamoto

Florigen, the mobile signal that moves from an induced leaf to the shoot apex and causes flowering, has eluded identification since it was first proposed 70 years ago. Understanding the nature of the mobile flowering signal would provide a key insight into the molecular mechanism of floral induction. Recent studies suggest that the Arabidopsis FLOWERING LOCUS T (FT) gene is a candidate for encoding florigen. We show that the protein encoded by Hd3a, a rice ortholog of FT, moves from the leaf to the shoot apical meristem and induces flowering in rice. These results suggest that the Hd3a protein may be the rice florigen.


Nature | 2003

Adaptation of photoperiodic control pathways produces short-day flowering in rice

Ryosuke Hayama; Shuji Yokoi; Shojiro Tamaki; Masahiro Yano; Ko Shimamoto

The photoperiodic control of flowering is one of the important developmental processes of plants because it is directly related to successful reproduction. Although the molecular genetic analysis of Arabidopsis thaliana, a long-day (LD) plant, has provided models to explain the control of flowering time in this species, very little is known about its molecular mechanisms for short-day (SD) plants. Here we show how the photoperiodic control of flowering is regulated in rice, a SD plant. Overexpression of OsGI, an orthologue of the Arabidopsis GIGANTEA (GI) gene in transgenic rice, caused late flowering under both SD and LD conditions. Expression of the rice orthologue of the Arabidopsis CONSTANS (CO) gene was increased in the transgenic rice, whereas expression of the rice orthologue of FLOWERING LOCUS T (FT) was suppressed. Our results indicate that three key regulatory genes for the photoperiodic control of flowering are conserved between Arabidopsis, a LD plant, and rice, a SD plant, but regulation of the FT gene by CO was reversed, resulting in the suppression of flowering in rice under LD conditions.


The Plant Cell | 2007

Calcium-Dependent Protein Kinases Regulate the Production of Reactive Oxygen Species by Potato NADPH Oxidase

Michie Kobayashi; Ikuko Ohura; Kazuhito Kawakita; Naohiko Yokota; Masayuki Fujiwara; Ko Shimamoto; Noriyuki Doke; Hirofumi Yoshioka

Reactive oxygen species (ROS) are implicated in plant innate immunity. NADPH oxidase (RBOH; for Respiratory Burst Oxidase Homolog) plays a central role in the oxidative burst, and EF-hand motifs in the N terminus of this protein suggest possible regulation by Ca2+. However, regulatory mechanisms are largely unknown. We identified Ser-82 and Ser-97 in the N terminus of potato (Solanum tuberosum) St RBOHB as potential phosphorylation sites. An anti-phosphopeptide antibody (pSer82) indicated that Ser-82 was phosphorylated by pathogen signals in planta. We cloned two potato calcium-dependent protein kinases, St CDPK4 and St CDPK5, and mass spectrometry analyses showed that these CDPKs phosphorylated only Ser-82 and Ser-97 in the N terminus of St RBOHB in a calcium-dependent manner. Ectopic expression of the constitutively active mutant of St CDPK5, St CDPK5VK, provoked ROS production in Nicotiana benthamiana leaves. The CDPK-mediated ROS production was disrupted by knockdown of Nb RBOHB in N. benthamiana. The loss of function was complemented by heterologous expression of wild-type potato St RBOHB but not by a mutant (S82A/S97A). Furthermore, the heterologous expression of St CDPK5VK phosphorylated Ser-82 of St RBOHB in N. benthamiana. These results suggest that St CDPK5 induces the phosphorylation of St RBOHB and regulates the oxidative burst.


The Plant Cell | 2007

Regulation of Rice NADPH Oxidase by Binding of Rac GTPase to Its N-Terminal Extension

Hann Ling Wong; Reinhard Pinontoan; Kokoro Hayashi; Ryo Tabata; Takashi Yaeno; Kana Hasegawa; Chojiro Kojima; Hirofumi Yoshioka; Koh Iba; Tsutomu Kawasaki; Ko Shimamoto

Reactive oxygen species (ROS) produced by NADPH oxidase play critical roles in various cellular activities, including plant innate immunity response. In contrast with the large multiprotein NADPH oxidase complex of phagocytes, in plants, only the homologs of the catalytic subunit gp91phox and the cytosolic regulator small GTPase Rac are found. Plant homologs of the gp91phox subunit are known as Rboh (for respiratory burst oxidase homolog). Although numerous Rboh have been isolated in plants, the regulation of enzymatic activity remains unknown. All rboh genes identified to date possess a conserved N-terminal extension that contains two Ca2+ binding EF-hand motifs. Previously, we ascertained that a small GTPase Rac (Os Rac1) enhanced pathogen-associated molecular pattern–induced ROS production and resistance to pathogens in rice (Oryza sativa). In this study, using yeast two-hybrid assay, we found that interaction between Rac GTPases and the N-terminal extension is ubiquitous and that a substantial part of the N-terminal region of Rboh, including the two EF-hand motifs, is required for the interaction. The direct Rac–Rboh interaction was supported by further studies using in vitro pull-down assay, a nuclear magnetic resonance titration experiment, and in vivo fluorescence resonance energy transfer (FRET) microscopy. The FRET analysis also suggests that cytosolic Ca2+ concentration may regulate Rac–Rboh interaction in a dynamic manner. Furthermore, transient coexpression of Os Rac1 and rbohB enhanced ROS production in Nicotiana benthamiana, suggesting that direct Rac–Rboh interaction may activate NADPH oxidase activity in plants. Taken together, the results suggest that cytosolic Ca2+ concentration may modulate NADPH oxidase activity by regulating the interaction between Rac GTPase and Rboh.


Development | 2008

Hd3a and RFT1 are essential for flowering in rice

Reina Komiya; Akiko Ikegami; Shojiro Tamaki; Shuji Yokoi; Ko Shimamoto

RICE FLOWERING LOCUS T 1 (RFT1/FT-L3) is the closest homologue of Heading date 3a (Hd3a), which is thought to encode a mobile flowering signal and promote floral transition under short-day (SD) conditions. RFT1 is located only 11.5 kb from Hd3a on chromosome 6. Although RFT1 RNAi plants flowered normally, double RFT1-Hd3a RNAi plants did not flower up to 300 days after sowing (DAS), indicating that Hd3a and RFT1 are essential for flowering in rice. RFT1 expression was very low in wild-type plants, but there was a marked increase in RFT1 expression by 70 DAS in Hd3a RNAi plants, which flowered 90 DAS. H3K9 acetylation around the transcription initiation site of the RFT1 locus had increased by 70 DAS but not at 35 DAS. In the absence of Hd3a and RFT1 expression, transcription of OsMADS14 and OsMADS15, two rice orthologues of Arabidopsis APETALA1, was strongly reduced, suggesting that they act downstream of Hd3a and RFT1. These results indicate that Hd3a and RFT1 act as floral activators under SD conditions, and that RFT1 expression is partly regulated by chromatin modification.


Plant Physiology | 2004

Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice

Hann Ling Wong; Tsuyoshi Sakamoto; Tsutomu Kawasaki; Kenji Umemura; Ko Shimamoto

Metallothioneins are small, ubiquitous Cys-rich proteins known to be involved in reactive oxygen species (ROS) scavenging and metal homeostasis. We found that the expression of a metallothionein gene (OsMT2b) was synergically down-regulated by OsRac1 and rice (Oryza sativa) blast-derived elicitors. Transgenic plants overexpressing OsMT2b showed increased susceptibility to bacterial blight and blast fungus. OsMT2b-overexpressing cells showed reduced elicitor-induced hydrogen peroxide production. In contrast, homozygous OsMT2b::Tos17-inserted mutant and OsMT2b-RNAi-silenced transgenic cells showed significantly higher elicitor-induced hydrogen peroxide production than the wild-type cells. In vitro assay showed that recombinant OsMT2b protein possessed superoxide- and hydroxyl radical-scavenging activities. Taken together, these results showed that OsMT2b is an ROS scavenger and its expression is down-regulated by OsRac1, thus potentiating ROS, which function as signals in resistance response. The results suggest that OsRac1 plays a dual role as an inducer of ROS production and a suppressor of ROS scavenging.


Nature | 2011

14-3-3 proteins act as intracellular receptors for rice Hd3a florigen

Ken Ichiro Taoka; Izuru Ohki; Hiroyuki Tsuji; Kyoko Furuita; Kokoro Hayashi; Tomoko Yanase; Midori Yamaguchi; Chika Nakashima; Yekti Asih Purwestri; Shojiro Tamaki; Yuka Ogaki; Chihiro Shimada; Atsushi Nakagawa; Chojiro Kojima; Ko Shimamoto

‘Florigen’ was proposed 75 years ago to be synthesized in the leaf and transported to the shoot apex, where it induces flowering. Only recently have genetic and biochemical studies established that florigen is encoded by FLOWERING LOCUS T (FT), a gene that is universally conserved in higher plants. Nonetheless, the exact function of florigen during floral induction remains poorly understood and receptors for florigen have not been identified. Here we show that the rice FT homologue Hd3a interacts with 14-3-3 proteins in the apical cells of shoots, yielding a complex that translocates to the nucleus and binds to the Oryza sativa (Os)FD1 transcription factor, a rice homologue of Arabidopsis thaliana FD. The resultant ternary ‘florigen activation complex’ (FAC) induces transcription of OsMADS15, a homologue of A. thaliana APETALA1 (AP1), which leads to flowering. We have determined the 2.4 Å crystal structure of rice FAC, which provides a mechanistic basis for florigen function in flowering. Our results indicate that 14-3-3 proteins act as intracellular receptors for florigen in shoot apical cells, and offer new approaches to manipulate flowering in various crops and trees.


Nature | 2011

Control of flowering and storage organ formation in potato by FLOWERING LOCUS T

Cristina Navarro; José A. Abelenda; Eduard Cruz-Oró; Carlos A. Cuéllar; Shojiro Tamaki; Javier Silva; Ko Shimamoto; Salomé Prat

Seasonal fluctuations in day length regulate important aspects of plant development such as the flowering transition or, in potato (Solanum tuberosum), the formation of tubers. Day length is sensed by the leaves, which produce a mobile signal transported to the shoot apex or underground stems to induce a flowering transition or, respectively, a tuberization transition. Work in Arabidopsis, tomato and rice (Oryza sativa) identified the mobile FLOWERING LOCUS T (FT) protein as a main component of the long-range ‘florigen’, or flowering hormone, signal. Here we show that expression of the Hd3a gene, the FT orthologue in rice, induces strict short-day potato types to tuberize in long days. Tuber induction is graft transmissible and the Hd3a–GFP protein is detected in the stolons of grafted plants, transport of the fusion protein thus correlating with tuber formation. We provide evidence showing that the potato floral and tuberization transitions are controlled by two different FT-like paralogues (StSP3D and StSP6A) that respond to independent environmental cues, and show that an autorelay mechanism involving CONSTANS modulates expression of the tuberization-control StSP6A gene.


Plant Physiology | 2005

RNA Silencing of Single and Multiple Members in a Gene Family of Rice

Daisuke Miki; Rika Itoh; Ko Shimamoto

RNA silencing with inverted repeat (IR) constructs has been used to suppress gene expression in various organisms. However, the transitive RNA-silencing effect described in plants may preclude the use of RNA silencing for a gene family. Here, we show that, in rice (Oryza sativa), transitive RNA silencing (spreading of double-stranded RNA along the target mRNA) occurred with the green fluorescent protein transgene but not with the endogenous phytoene desaturase gene. We fused IR copies of unique 3′ untranslated regions derived from the rice OsRac gene family to a strong promoter and stably introduced them into rice. Each of the seven members of the OsRac gene family was specifically suppressed by its respective IR construct. We also examined IR constructs in which multiple 3′ untranslated regions were fused and showed that three members of the OsRac gene family were effectively suppressed by a single construct. Using highly conserved regions of the two members of the OsRac gene family, we also suppressed the expression of all members of the gene family with variable efficiencies. These results suggest that RNA silencing is a useful method for the functional analysis of gene families in rice and other plants.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice

Utut Widyastuti Suharsono; Yukiko Fujisawa; Tsutomu Kawasaki; Yukimoto Iwasaki; Hikaru Satoh; Ko Shimamoto

We used rice dwarf1 (d1) mutants lacking a single-copy Gα gene and addressed Gαs role in disease resistance. d1 mutants exhibited a highly reduced hypersensitive response to infection by an avirulent race of rice blast. Activation of PR gene expression in the leaves of the mutants infected with rice blast was delayed for 24 h relative to the wild type. H2O2 production and PR gene expression induced by sphingolipid elicitors (SE) were strongly suppressed in d1 cell cultures. Expression of the constitutively active OsRac1, a small GTPase Rac of rice, in d1 mutants restored SE-dependent defense signaling and resistance to rice blast. Gα mRNA was induced by an avirulent race of rice blast and SE application on the leaf. These results indicated the role of Gα in R gene-mediated disease resistance of rice. We have proposed a model for the defense signaling of rice in which the heterotrimeric G protein functions upstream of the small GTPase OsRac1 in the early steps of signaling.

Collaboration


Dive into the Ko Shimamoto's collaboration.

Top Co-Authors

Avatar

Tsutomu Kawasaki

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hann Ling Wong

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Izawa

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Tsuji

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoji Kawano

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Masayuki Fujiwara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shojiro Tamaki

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Letian Chen

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge