Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koen Bartholomeeusen is active.

Publication


Featured researches published by Koen Bartholomeeusen.


Traffic | 2010

HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells.

Metka Lenassi; Gerard Cagney; Maofu Liao; Tomaž Vaupotič; Koen Bartholomeeusen; Yifan Cheng; Nevan J. Krogan; Ana Plemenitaš; B. Matija Peterlin

The HIV accessory protein negative factor (Nef) is one of the earliest and most abundantly expressed viral proteins. It is also found in the serum of infected individuals (Caby MP, Lankar D, Vincendeau‐Scherrer C, Raposo G, Bonnerot C. Exosomal‐like vesicles are present in human blood plasma. Int Immunol 2005;17:879–887). Extracellular Nef protein has deleterious effects on CD4+ T cells (James CO, Huang MB, Khan M, Garcia‐Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol 2004;78:3099–3109), the primary targets of HIV, and can suppress immunoglobulin class switching in bystander B cells (Qiao X, He B, Chiu A, Knowles DM, Chadburn A, Cerutti A. Human immunodeficiency virus 1 Nef suppresses CD40‐dependent immunoglobulin class switching in bystander B cells. Nat Immunol 2006;7:302–310). Nevertheless, the mode of exit of Nef from infected cells remains a conundrum. We found that Nef stimulates its own export via the release of exosomes from all cells examined. Depending on its intracellular location, these Nef exosomes form at the plasma membrane, late endosomes or both compartments in Jurkat, SupT1 and primary T cells, respectively. Nef release through exosomes is conserved also during HIV‐1 infection of peripheral blood lymphocytes (PBLs). Released Nef exosomes cause activation‐induced cell death of resting PBLs in vitro. Thus, HIV‐infected cells export Nef in bioactive vesicles, which facilitate the depletion of CD4+ T cells that is a hallmark of acquired immunodeficiency syndrome (AIDS).


Genes & Development | 2011

The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes

Jiri Kohoutek; Koen Bartholomeeusen; Johansen E; Hulinkova P; Zeping Luo; Cimermancic P; Jernej Ule; Boris Matija Peterlin

Various cyclin-dependent kinase (Cdk) complexes have been implicated in the regulation of transcription. In this study, we identified a 70-kDa Cyclin K (CycK) that binds Cdk12 and Cdk13 to form two different complexes (CycK/Cdk12 or CycK/Cdk13) in human cells. The CycK/Cdk12 complex regulates phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and expression of a small subset of human genes, as revealed in expression microarrays. Depletion of CycK/Cdk12 results in decreased expression of predominantly long genes with high numbers of exons. The most prominent group of down-regulated genes are the DNA damage response genes, including the critical regulators of genomic stability: BRCA1 (breast and ovarian cancer type 1 susceptibility protein 1), ATR (ataxia telangiectasia and Rad3-related), FANCI, and FANCD2. We show that CycK/Cdk12, rather than CycK/Cdk13, is necessary for their expression. Nuclear run-on assays and chromatin immunoprecipitations with RNA polymerase II on the BRCA1 and FANCI genes suggest a transcriptional defect in the absence of CycK/Cdk12. Consistent with these findings, cells without CycK/Cdk12 induce spontaneous DNA damage and are sensitive to a variety of DNA damage agents. We conclude that through regulation of expression of DNA damage response genes, CycK/Cdk12 protects cells from genomic instability. The essential role of CycK for organisms in vivo is further supported by the result that genetic inactivation of CycK in mice causes early embryonic lethality.


Journal of Biological Chemistry | 2012

Bromodomain and Extra-terminal (BET) Bromodomain Inhibition Activate Transcription via Transient Release of Positive Transcription Elongation Factor b (P-TEFb) from 7SK Small Nuclear Ribonucleoprotein

Koen Bartholomeeusen; Yanhui Xiang; Koh Fujinaga; B. Matija Peterlin

Background: P-TEFb regulates transcription elongation, cell growth, and proliferation. Results: BET bromodomain inhibition by JQ1 transiently releases free P-TEFb from the inactive 7SK snRNP, thus activating HEXIM1 and HIV transcription. Conclusion: JQ1 affects the P-TEFb equilibrium. Significance: P-TEFb release from and reassembly into 7SK snRNP by JQ1 inhibits tumor cell growth and reactivates latent HIV. By phosphorylating elongation factors and the C-terminal domain of RNA polymerase II, the positive transcription elongation factor b (P-TEFb) is the critical kinase for transcription elongation and co-transcriptional processing of eukaryotic genes. It exists in inactive small nuclear ribonucleoprotein (7SK snRNP) and active (free P-TEFb) complexes in cells. The P-TEFb equilibrium determines the state of cellular activation, proliferation, and differentiation. Free P-TEFb, which is required for growth, can be recruited to RNA polymerase II via transcription factors, BRD4, or the super elongation complex (SEC). UV light, various signaling cascades, transcriptional blockade, or compounds such as hexamethylene bisacetamide (HMBA), suberoylanilide hydroxamic acid (SAHA), and other histone deacetylase inhibitors lead to a rapid release of free P-TEFb, followed by its reassembly into the 7SK snRNP. As a consequence, transcription of HEXIM1, a critical 7SK snRNP subunit, and HIV is induced. In this study, we found that a bromodomain and extra-terminal (BET) bromodomain inhibitor, JQ1, which inhibits BRD4 by blocking its association with chromatin, also leads to the rapid release of free P-TEFb from the 7SK snRNP. Indeed, JQ1 transiently increased levels of free P-TEFb and BRD4·P-TEFb and SEC·P-TEFb complexes in cells. As a consequence, the levels of HEXIM1 and HIV proteins rose. Importantly, the knockdown of ELL2, a subunit of the SEC, blocked the ability of JQ1 to increase HIV transcription. Finally, the effects of JQ1 and HMBA or SAHA on the P-TEFb equilibrium were cooperative. We conclude that HMBA, SAHA, and JQ1 affect transcription elongation by a similar and convergent mechanism.


Journal of Biological Chemistry | 2013

Histone Deacetylase Inhibitors (HDACis) That Release the Positive Transcription Elongation Factor b (P-TEFb) from Its Inhibitory Complex Also Activate HIV Transcription

Koen Bartholomeeusen; Koh Fujinaga; Yanhui Xiang; B. Matija Peterlin

Background: HDACis activate HIV transcription. Results: P-TEFb release from 7SK snRNP correlates better than histone H3 or tubulin acetylation with HIV reactivation by HDACis in cell lines. Conclusion: Levels of P-TEFb must be increased before HDACis can reactivate HIV in resting primary CD4+ T cells. Significance: Levels and activity of P-TEFb are critical for HIV reactivation in all cells. Numerous studies have looked at the effects of histone deacetylase inhibitors (HDACis) on HIV reactivation in established transformed cell lines and primary CD4+ T cells. However, their findings remain confusing, and differences between effects of class I- and class II-specific HDACis persist. Because no clear picture emerged, we decided to determine how HDACis reactivate HIV in transformed cell lines and primary cells. We found that neither histone H3 nor tubulin acetylation correlated with HIV reactivation in Jurkat and HeLa cells. Rather, HDACis that could reactivate HIV in chromatin or on episomal plasmids also released free positive transcription elongation factor b (P-TEFb) from its inhibitory 7SK snRNP. In resting primary CD4+ T cells, where levels of P-TEFb are vanishingly low, the most potent HDACi, suberoylanilide hydroxyamic acid (SAHA), had minimal effects. In contrast, when these cells were treated with a PKC agonist, bryostatin 1, which increased levels of P-TEFb, then SAHA once again reactivated HIV. We conclude that HDACis, which can reactivate HIV, work via the release of free P-TEFb from the 7SK snRNP.


PLOS Pathogens | 2012

Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

David J. Stanley; Koen Bartholomeeusen; David C. Crosby; Dong Young Kim; Eunju Kwon; Linda Yen; Nathalie Caretta Cartozo; Ming Li; Stefanie Jäger; Jeremy Mason-Herr; Fumiaki Hayashi; Shigeyuki Yokoyama; Nevan J. Krogan; Reuben S. Harris; Boris Matija Peterlin; John D. Gross

Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV). HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G). Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.


Virology | 2014

Reactivation of latent HIV-1 by new semi-synthetic ingenol esters

Diego Pandeló José; Koen Bartholomeeusen; Rodrigo Delvecchio da Cunha; Celina Monteiro Abreu; Jan Glinski; Thais Barbizan Ferreira da Costa; Ana Flávia Mello Bacchi Rabay; Luiz Francisco Pianowski Filho; Lech W. Dudycz; Udaykumar Ranga; Boris Matija Peterlin; Luiz Francisco Pianowski; Amilcar Tanuri; Renato S. Aguiar

The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART.


Journal of Biological Chemistry | 2014

Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription.

Pingyang Liu; Yanhui Xiang; Koh Fujinaga; Koen Bartholomeeusen; Kyle A. Nilson; David H. Price; B. Matija Peterlin

Background: HEXIM1 inhibits P-TEFb in the 7SK snRNP. Results: The critical promoter driving HEXIM1 expression was identified and was found to respond to levels of free P-TEFb. Conclusion: HEXIM1 expression levels rise to compensate for excessive P-TEFb activity. Significance: Increased levels of free P-TEFb lead to induction of HEXIM1 to maintain transcriptional homeostasis. By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis.


Molecular and Cellular Biology | 2015

Cyclin-dependent kinase 12 increases 3' end processing of growth factor-induced c-FOS transcripts.

Tristan T. Eifler; Wei Shao; Koen Bartholomeeusen; Koh Fujinaga; Stefanie Jäger; Jeffrey R. Johnson; Zeping Luo; Nevan J. Krogan; B. Matija Peterlin

ABSTRACT Transcriptional cyclin-dependent kinases (CDKs) regulate RNA polymerase II initiation and elongation as well as cotranscriptional mRNA processing. In this report, we describe an important role for CDK12 in the epidermal growth factor (EGF)-induced c-FOS proto-oncogene expression in mammalian cells. This kinase was found in the exon junction complexes (EJC) together with SR proteins and was thus recruited to RNA polymerase II. In cells depleted of CDK12 or eukaryotic translation initiation factor 4A3 (eIF4A3) from the EJC, EGF induced fewer c-FOS transcripts. In these cells, phosphorylation of serines at position 2 in the C-terminal domain (CTD) of RNA polymerase II, as well as levels of cleavage-stimulating factor 64 (Cstf64) and 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF73), was reduced at the c-FOS gene. These effects impaired 3′ end processing of c-FOS transcripts. Mutant CDK12 proteins lacking their Arg-Ser-rich (RS) domain or just the RS domain alone acted as dominant negative proteins. Thus, CDK12 plays an important role in cotranscriptional processing of c-FOS transcripts.


PLOS Pathogens | 2018

Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors

Jennifer M. Binning; Amber M. Smith; Judd F. Hultquist; Charles S. Craik; Nathalie Caretta; Melody G. Campbell; Lily Burton; Florencia La Greca; Michael J. McGregor; Hai M. Ta; Koen Bartholomeeusen; B. Matija Peterlin; Nevan J. Krogan; Natalia Sevillano; Yifan Cheng; John D. Gross

The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.


Archive | 2012

Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G - eScholarship

Boris Matija Peterlin; John D. Gross; Nevan J. Krogan; David J. Stanley; Koen Bartholomeeusen; David C. Crosby; Dong Young Kim; Eunju Kwon; Linda Yen; Nc Cartozo; Ming Li; Stefanie Jäger; J Mason-Herr

Collaboration


Dive into the Koen Bartholomeeusen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koh Fujinaga

University of California

View shared research outputs
Top Co-Authors

Avatar

John D. Gross

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanhui Xiang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Young Kim

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge