Koen E. A. van de Sande
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koen E. A. van de Sande.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010
Koen E. A. van de Sande; Theo Gevers; Cees G. M. Snoek
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks, one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by 7 percent on the Mediamill Challenge.
international conference on computer vision | 2011
Koen E. A. van de Sande; Jasper R. R. Uijlings; Theo Gevers; Arnold W. M. Smeulders
For object recognition, the current state-of-the-art is based on exhaustive search. However, to enable the use of more expensive features and classifiers and thereby progress beyond the state-of-the-art, a selective search strategy is needed. Therefore, we adapt segmentation as a selective search by reconsidering segmentation: We propose to generate many approximate locations over few and precise object delineations because (1) an object whose location is never generated can not be recognised and (2) appearance and immediate nearby context are most effective for object recognition. Our method is class-independent and is shown to cover 96.7% of all objects in the Pascal VOC 2007 test set using only 1,536 locations per image. Our selective search enables the use of the more expensive bag-of-words method which we use to substantially improve the state-of-the-art by up to 8.5% for 8 out of 20 classes on the Pascal VOC 2010 detection challenge.
conference on image and video retrieval | 2008
Koen E. A. van de Sande; Theo Gevers; Cees G. M. Snoek
Concept classification is important to access visual information on the level of objects and scene types. So far, intensity-based features have been widely used. To increase discriminative power, color features have been proposed only recently. As many features exist, a structured overview is required of color features in the context of concept classification. Therefore, this paper studies 1. the invariance properties and 2. the distinctiveness of color features in a structured way. The invariance properties of color features with respect to photometric changes are summarized. The distinctiveness of color features is assessed experimentally using an image and a video benchmark: the PASCAL VOC Challenge 2007 and the Mediamill Challenge. Because color features cannot be studied independently from the points at which they are extracted, different point sampling strategies based on Harris-Laplace salient points, dense sampling and the spatial pyramid are also studied. From the experimental results, it can be derived that invariance to light intensity changes and light color changes affects concept classification. The results reveal further that the usefulness of invariance is concept-specific.
international conference on multimedia retrieval | 2013
Amirhossein Habibian; Koen E. A. van de Sande; Cees G. M. Snoek
Representing videos using vocabularies composed of concept detectors appears promising for event recognition. While many have recently shown the benefits of concept vocabularies for recognition, the important question what concepts to include in the vocabulary is ignored. In this paper, we study how to create an effective vocabulary for arbitrary-event recognition in web video. We consider four research questions related to the number, the type, the specificity and the quality of the detectors in concept vocabularies. A rigorous experimental protocol using a pool of 1,346 concept detectors trained on publicly available annotations, a dataset containing 13,274 web videos from the Multimedia Event Detection benchmark, 25 event groundtruth definitions, and a state-of-the-art event recognition pipeline allow us to analyze the performance of various concept vocabulary definitions. From the analysis we arrive at the recommendation that for effective event recognition the concept vocabulary should i) contain more than 200 concepts, ii) be diverse by covering object, action, scene, people, animal and attribute concepts,iii) include both general and specific concepts, and iv) increase the number of concepts rather than improve the quality of the individual detectors. We consider the recommendations for video event recognition using concept vocabularies the most important contribution of the paper, as they provide guidelines for future work.
computer vision and pattern recognition | 2014
Koen E. A. van de Sande; Cees G. M. Snoek; Arnold W. M. Smeulders
A major computational bottleneck in many current algorithms is the evaluation of arbitrary boxes. Dense local analysis and powerful bag-of-word encodings, such as Fisher vectors and VLAD, lead to improved accuracy at the expense of increased computation time. Where a simplification in the representation is tempting, we exploit novel representations while maintaining accuracy. We start from state-of-the-art, fast selective search, but our method will apply to any initial box-partitioning. By representing the picture as sparse integral images, one per codeword, we achieve a Fast Local Area Independent Representation. FLAIR allows for very fast evaluation of any box encoding and still enables spatial pooling. In FLAIR we achieve exact VLADs difference coding, even with L2 and power-norms. Finally, by multiple codeword assignments, we achieve exact and approximate Fisher vectors with FLAIR. The results are a 18x speedup, which enables us to set a new state-of-the-art on the challenging 2010 PASCAL VOC objects and the fine-grained categorization of the CUB-2011 200 bird species. Plus, we rank number one in the official ImageNet 2013 detection challenge.
cross language evaluation forum | 2009
Koen E. A. van de Sande; Theo Gevers; Arnold W. M. Smeulders
Our group within the University of Amsterdam participated in the large-scale visual concept detection task of ImageCLEF 2009. Our experiments focus on increasing the robustness of the individual concept detectors based on the bag-of-words approach, and less on the hierarchical nature of the concept set used. To increase the robustness of individual concept detectors, our experiments emphasize in particular the role of visual sampling, the value of color invariant features, the influence of codebook construction, and the effectiveness of kernel-based learning parameters. The participation in ImageCLEF 2009 has been successful, resulting in the top ranking for the large-scale visual concept detection task in terms of both EER and AUC. For 40 out of 53 individual concepts, we obtain the best performance of all submissions to this task. For the hierarchical evaluation, which considers the whole hierarchy of concepts instead of single detectors, using the concept likelihoods estimated by our detectors directly works better than scaling these likelihoods based on the class priors.
international conference on multimedia retrieval | 2013
Masoud Mazloom; Efstratios Gavves; Koen E. A. van de Sande; Cees G. M. Snoek
An emerging trend in video event detection is to learn an event from a bank of concept detector scores. Different from existing work, which simply relies on a bank containing all available detectors, we propose in this paper an algorithm that learns from examples what concepts in a bank are most informative per event. We model finding this bank of informative concepts out of a large set of concept detectors as a rare event search. Our proposed approximate solution finds the optimal concept bank using a cross-entropy optimization. We study the behavior of video event detection based on a bank of informative concepts by performing three experiments on more than 1,000 hours of arbitrary internet video from the TRECVID multimedia event detection task. Starting from a concept bank of 1,346 detectors we show that 1.)some concept banks are more informative than others for specific events, 2.) event detection using an automatically obtained informative concept bank is more robust than using all available concepts, 3.) even for small amounts of training examples an informative concept bank outperforms a full bank and a bag-of-word event representation, and 4.) we show qualitatively that the informative concept banks make sense for the events of interest, without being programmed to do so. We conclude that for concept banks it pays to be informative.
machine vision applications | 2014
Gregory K. Myers; Ramesh Nallapati; Julien van Hout; Stephanie Pancoast; Ramakant Nevatia; Chen Sun; Amirhossein Habibian; Dennis Koelma; Koen E. A. van de Sande; Arnold W. M. Smeulders; Cees G. M. Snoek
Multimedia event detection (MED) is a challenging problem because of the heterogeneous content and variable quality found in large collections of Internet videos. To study the value of multimedia features and fusion for representing and learning events from a set of example video clips, we created SESAME, a system for video SEarch with Speed and Accuracy for Multimedia Events. SESAME includes multiple bag-of-words event classifiers based on single data types: low-level visual, motion, and audio features; high-level semantic visual concepts; and automatic speech recognition. Event detection performance was evaluated for each event classifier. The performance of low-level visual and motion features was improved by the use of difference coding. The accuracy of the visual concepts was nearly as strong as that of the low-level visual features. Experiments with a number of fusion methods for combining the event detection scores from these classifiers revealed that simple fusion methods, such as arithmetic mean, perform as well as or better than other, more complex fusion methods. SESAME’s performance in the 2012 TRECVID MED evaluation was one of the best reported.
international conference on image processing | 2009
Rui Lu; Arjan Gijsenij; Theo Gevers; Koen E. A. van de Sande; Jan-Mark Geusebroek; De Xu
The aim of color constancy is to remove the effect of the color of the light source. Since color constancy is inherently an ill-posed problem, different assumptions have been proposed. Because existing color constancy algorithms are based on specific assumptions, none of them can be considered as universal. Therefore, how to select a proper algorithm for a given imaging configuration is an important question.
international conference on multimedia retrieval | 2012
Daan T. J. Vreeswijk; Cees G. M. Snoek; Koen E. A. van de Sande; Arnold W. M. Smeulders
This paper investigates the natural bias humans display when labeling images with a container label like vehicle or carnivore. Using three container concepts as subtree root nodes, and all available concepts between these roots and the images from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset, we analyze the differences between the images labeled at these varying levels of abstraction and the union of their constituting leaf nodes. We find that for many container concepts, a strong preference for one or a few different constituting leaf nodes occurs. These results indicate that care is needed when using hierarchical knowledge in image classification: if the aim is to classify vehicles the way humans do, then cars and buses may be the only correct results.