Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koen Hufkens is active.

Publication


Featured researches published by Koen Hufkens.


Ecological Applications | 2014

Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment

Trevor F. Keenan; B. Darby; E. Felts; Oliver Sonnentag; Mark A. Friedl; Koen Hufkens; John O'Keefe; Stephen Klosterman; J. W. Munger; Michael Toomey; Andrew D. Richardson

Digital repeat photography is becoming widely used for near-surface remote sensing of vegetation. Canopy greenness, which has been used extensively for phenological applications, can be readily quantified from camera images. Important questions remain, however, as to whether the observed changes in canopy greenness are directly related to changes in leaf-level traits, changes in canopy structure, or some combination thereof. We investigated relationships between canopy greenness and various metrics of canopy structure and function, using five years (2008–2012) of automated digital imagery, ground observations of phenological transitions, leaf area index (LAI) measurements, and eddy covariance estimates of gross ecosystem photosynthesis from the Harvard Forest, a temperate deciduous forest in the northeastern United States. Additionally, we sampled canopy sunlit leaves on a weekly basis throughout the growing season of 2011. We measured physiological and morphological traits including leaf size, mass (wet/dry), nitrogen content, chlorophyll fluorescence, and spectral reflectance and characterized individual leaf color with flatbed scanner imagery. Our results show that observed spring and autumn phenological transition dates are well captured by information extracted from digital repeat photography. However, spring development of both LAI and the measured physiological and morphological traits are shown to lag behind spring increases in canopy greenness, which rises very quickly to its maximum value before leaves are even half their final size. Based on the hypothesis that changes in canopy greenness represent the aggregate effect of changes in both leaf-level properties (specifically, leaf color) and changes in canopy structure (specifically, LAI), we developed a two end-member mixing model. With just a single free parameter, the model was able to reproduce the observed seasonal trajectory of canopy greenness. This analysis shows that canopy greenness is relatively insensitive to changes in LAI at high LAI levels, which we further demonstrate by assessing the impact of an ice storm on both LAI and canopy greenness. Our study provides new insights into the mechanisms driving seasonal changes in canopy greenness retrieved from digital camera imagery. The nonlinear relationship between canopy greenness and canopy LAI has important implications both for phenological research applications and for assessing responses of vegetation to disturbances.


Ecological Applications | 2015

Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis

Michael Toomey; Mark A. Friedl; Steve Frolking; Koen Hufkens; Stephen Klosterman; Oliver Sonnentag; Dennis D. Baldocchi; Carl J. Bernacchi; Sebastien Biraud; Gil Bohrer; Edward R. Brzostek; Sean P. Burns; Carole Coursolle; David Y. Hollinger; Hank A. Margolis; Harry McCaughey; Russell K. Monson; J. William Munger; Stephen G. Pallardy; Richard P. Phillips; Margaret S. Torn; Sonia Wharton; Marcelo Zeri; Andrew D. Richardson

The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.


Nature Communications | 2013

Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin

Elizabeth Kearsley; Thalès de Haulleville; Koen Hufkens; Alidé Kidimbu; Benjamin Toirambe; Geert Baert; Dries Huygens; Yodit Kebede; Pierre Defourny; Jan Bogaert; Hans Beeckman; Kathy Steppe; Pascal Boeckx; Hans Verbeeck

Policies to reduce emissions from deforestation and forest degradation largely depend on accurate estimates of tropical forest carbon stocks. Here we present the first field-based carbon stock data for the Central Congo Basin in Yangambi, Democratic Republic of Congo. We find an average aboveground carbon stock of 162 ± 20  Mg  C  ha(-1) for intact old-growth forest, which is significantly lower than stocks recorded in the outer regions of the Congo Basin. The best available tree height-diameter relationships derived for Central Africa do not render accurate canopy height estimates for our study area. Aboveground carbon stocks would be overestimated by 24% if these inaccurate relationships were used. The studied forests have a lower stature compared with forests in the outer regions of the basin, which confirms remotely sensed patterns. Additionally, we find an average soil carbon stock of 111 ± 24  Mg  C  ha(-1), slightly influenced by the current land-use change.


Environmental Research Letters | 2014

A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change

Mark A. Friedl; Josh M Gray; Eli K. Melaas; Andrew D. Richardson; Koen Hufkens; Trevor F. Keenan; Amey S. Bailey; John O’Keefe

By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3–5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern temperate deciduous forests will respond to future climate warming. Specifically, springtime temperatures in 2010 and 2012 were the warmest on record in the Northeastern United States, with temperatures that were roughly equivalent to the lower end of warming scenarios that are projected for this region decades from now. Climate conditions in these two years therefore provide a unique empirical basis, that complements model-based studies, for improving understanding of how northeastern temperate forest phenology will change in the future. To perform our investigation, we analyzed near surface air temperatures from the United States Historical Climatology Network, time series of satellite-derived vegetation indices from NASA’s Moderate Resolution Imaging Spectroradiometer, and in situ phenological observations. Our study region encompassed the northern third of the eastern temperate forest ecoregion, extending from Pennsylvania to Canada. Springtime temperatures in 2010 and 2012 were nearly 3 °C warmer than long-term average temperatures from 1971–2000 over the region, leading to median anomalies of more than 100 growing degree days. In response, satellite and ground observations show that leaf emergence occurred up to two weeks earlier than normal, but with significant sensitivity to the specific timing of thermal forcing. These results are important for two reasons. First, they provide an empirical demonstration of the sensitivity of springtime phenology in northeastern temperate forests to future climate change that supports and complements modelbased predictions. Second, our results show that subtle differences in the character of thermal


Ecological Informatics | 2008

Estimating the ecotone width in patchy ecotones using a sigmoid wave approach

Koen Hufkens; R. Ceulemans; Paul Scheunders

Abstract Ecotones are zones of transition between two adjacent ecological systems and are characterized by a high rate of change compared to these adjacent areas. They are dynamic entities with both a spatial and temporal property, reflected in an ecotone width and location, which vary across time during succession or environmental change on both a local or global scale. Various techniques have been proposed to characterize ecotones, one of them being a sigmoid wave curve fit on the transects across the ecotone. In this paper, we test the robustness of a sigmoid wave model approach on simulated ecotone data with a varying degree of steepness, patchiness and transect length. An analysis of variance (ANOVA) provided us details on the sensitivity of the estimated ecotone width for the steepness, the transect length as well as for the patchiness of the ecotone. The statistics also allowed us to investigate the interaction between the different parameters on the resulting ecotone width. We conclude that the sigmoid wave curve-fitting algorithm provides a robust way to describe ecotones with various degrees of steepness and patchiness. Depending on the transect window size used, a sigmoid wave curve-fitting algorithm will pick up variations in ecotone steepness or in ecotone steepness and patchiness.


Remote Sensing | 2016

Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing

Margaret Kosmala; Alycia Crall; Rebecca Cheng; Koen Hufkens; Sandra Henderson; Andrew D. Richardson

The impact of a rapidly changing climate on the biosphere is an urgent area of research for mitigation policy and management. Plant phenology is a sensitive indicator of climate change and regulates the seasonality of carbon, water, and energy fluxes between the land surface and the climate system, making it an important tool for studying biosphere–atmosphere interactions. To monitor plant phenology at regional and continental scales, automated near-surface cameras are being increasingly used to supplement phenology data derived from satellite imagery and data from ground-based human observers. We used imagery from a network of phenology cameras in a citizen science project called Season Spotter to investigate whether information could be derived from these images beyond standard, color-based vegetation indices. We found that engaging citizen science volunteers resulted in useful science knowledge in three ways: first, volunteers were able to detect some, but not all, reproductive phenology events, connecting landscape-level measures with field-based measures. Second, volunteers successfully demarcated individual trees in landscape imagery, facilitating scaling of vegetation indices from organism to ecosystem. And third, volunteers’ data were used to validate phenology transition dates calculated from vegetation indices and to identify potential improvements to existing algorithms to enable better biological interpretation. As a result, the use of citizen science in combination with near-surface remote sensing of phenology can be used to link ground-based phenology observations to satellite sensor data for scaling and validation. Well-designed citizen science projects targeting improved data processing and validation of remote sensing imagery hold promise for providing the data needed to address grand challenges in environmental science and Earth observation.


Scientific Data | 2018

Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery

Andrew D. Richardson; Koen Hufkens; Thomas Milliman; Donald M. Aubrecht; Min Chen; Josh M Gray; Miriam R. Johnston; Trevor F. Keenan; Stephen Klosterman; Margaret Kosmala; Eli K. Melaas; Mark A. Friedl; Stephen E. Frolking

Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.


PLOS ONE | 2015

Aboveground vs. belowground carbon stocks in African tropical lowland rainforest : drivers and implications

Sebastian Doetterl; Elizabeth Kearsley; Marijn Bauters; Koen Hufkens; Janvier Lisingo; Geert Baert; Hans Verbeeck; Pascal Boeckx

Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.


International Journal of Applied Earth Observation and Geoinformation | 2012

Accuracy assessment of contextual classification results for vegetation mapping

Guy Thoonen; Koen Hufkens; Jeroen Vanden Borre; Toon Spanhove; Paul Scheunders

Abstract A new procedure for quantitatively assessing the geometric accuracy of thematic maps, obtained from classifying hyperspectral remote sensing data, is presented. More specifically, the methodology is aimed at the comparison between results from any of the currently popular contextual classification strategies. The proposed procedure characterises the shapes of all objects in a classified image by defining an appropriate reference and a new quality measure. The results from the proposed procedure are represented in an intuitive way, by means of an error matrix, analogous to the confusion matrix used in traditional thematic accuracy representation. A suitable application for the methodology is vegetation mapping, where lots of closely related and spatially connected land cover types are to be distinguished. Consequently, the procedure is tested on a heathland vegetation mapping problem, related to Natura 2000 habitat monitoring. Object-based mapping and Markov Random Field classification results are compared, showing that the selected Markov Random Fields approach is more suitable for the fine-scale problem at hand, which is confirmed by the proposed procedure.


Ecology and Evolution | 2017

Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering

Elizabeth Kearsley; Hans Verbeeck; Koen Hufkens; Frederik Van de Perre; Sebastian Doetterl; Geert Baert; Hans Beeckman; Pascal Boeckx; Dries Huygens

Abstract Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) driven by edaphic conditions but rather by trait combinations of G. dewevrei that aid in achieving monodominance. Functional community structure between these monodominant and mixed forests has, however, not yet been compared. Additionally, little is known about nondominant species in the monodominant forest community. These two topics are addressed in this study. We investigate the functional community structure of 10 one‐hectare plots of monodominant and mixed forests in a central region of the Congo basin, in DR Congo. Thirteen leaf and wood traits are measured, covering 95% (basal area weighted) of all species present in the plots, including leaf nutrient contents, leaf isotopic compositions, specific leaf area, wood density, and vessel anatomy. The trait‐based assessment of G. dewevrei shows an ensemble of traits related to water use and transport that could be favorable for its location near forest rivers. Moreover, indications have been found for N and P limitations in the monodominant forest, possibly related to ectomycorrhizal associations formed with G. dewevrei. Reduced leaf N and P contents are found at the community level for the monodominant forest and for different nondominant groups, as compared to those in the mixed forest. In summary, this work shows that environmental filtering does prevail in the monodominant G. dewevrei forest, leading to lower functional diversity in this forest type, with the dominant species showing beneficial traits related to its common riverine locations and with reduced soil N and P availability found in this environment, both coregulating the tree community assembly.

Collaboration


Dive into the Koen Hufkens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Frolking

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor F. Keenan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Milliman

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge