Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koen J. F. Verhoeven is active.

Publication


Featured researches published by Koen J. F. Verhoeven.


New Phytologist | 2010

Stress‐induced DNA methylation changes and their heritability in asexual dandelions

Koen J. F. Verhoeven; Jeroen J. Jansen; Peter J. van Dijk; Arjen Biere

*DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent environmentally induced methylation changes are transmitted to offspring, and whether observed methylation variation is truly independent or a downstream consequence of genetic variation between individuals. *Genetically identical apomictic dandelion (Taraxacum officinale) plants were exposed to different ecological stresses, and apomictic offspring were raised in a common unstressed environment. We used methylation-sensitive amplified fragment length polymorphism markers to screen genome-wide methylation alterations triggered by stress treatments and to assess the heritability of induced changes. *Various stresses, most notably chemical induction of herbivore and pathogen defenses, triggered considerable methylation variation throughout the genome. Many modifications were faithfully transmitted to offspring. Stresses caused some epigenetic divergence between treatment and controls, but also increased epigenetic variation among plants within treatments. *These results show the following. First, stress-induced methylation changes are common and are mostly heritable. Second, sequence-independent, autonomous methylation variation is readily generated. This highlights the potential of epigenetic inheritance to play an independent role in evolutionary processes, which is superimposed on the system of genetic inheritance.


Nature | 2008

Successful range-expanding plants experience less above-ground and below-ground enemy impact

Tim Engelkes; Elly Morriën; Koen J. F. Verhoeven; T. Martijn Bezemer; Arjen Biere; Jeffrey A. Harvey; Lauren M. McIntyre; W.L.M. Tamis; Wim H. van der Putten

Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2011

Population admixture, biological invasions and the balance between local adaptation and inbreeding depression

Koen J. F. Verhoeven; Mirka Macel; Lorne M. Wolfe; Arjen Biere

When previously isolated populations meet and mix, the resulting admixed population can benefit from several genetic advantages, including increased genetic variation, the creation of novel genotypes and the masking of deleterious mutations. These admixture benefits are thought to play an important role in biological invasions. In contrast, populations in their native range often remain differentiated and frequently suffer from inbreeding depression owing to isolation. While the advantages of admixture are evident for introduced populations that experienced recent bottlenecks or that face novel selection pressures, it is less obvious why native range populations do not similarly benefit from admixture. Here we argue that a temporary loss of local adaptation in recent invaders fundamentally alters the fitness consequences of admixture. In native populations, selection against dilution of the locally adapted gene pool inhibits unconstrained admixture and reinforces population isolation, with some level of inbreeding depression as an expected consequence. We show that admixture is selected against despite significant inbreeding depression because the benefits of local adaptation are greater than the cost of inbreeding. In contrast, introduced populations that have not yet established a pattern of local adaptation can freely reap the benefits of admixture. There can be strong selection for admixture because it instantly lifts the inbreeding depression that had built up in isolated parental populations. Recent work in Silene suggests that reduced inbreeding depression associated with post-introduction admixture may contribute to enhanced fitness of invasive populations. We hypothesize that in locally adapted populations, the benefits of local adaptation are balanced against an inbreeding cost that could develop in part owing to the isolating effect of local adaptation itself. The inbreeding cost can be revealed in admixing populations during recent invasions.


Ecology Letters | 2009

Plant invaders and their novel natural enemies: who is naïve?

Koen J. F. Verhoeven; Arjen Biere; Jeffrey A. Harvey; W.H. van der Putten

Introduced exotic species encounter a wide range of non-coevolved enemies and competitors in their new range. Evolutionary novelty is a key aspect of these interactions, but who benefits from novelty: the exotic species or their new antagonists? Paradoxically, the novelty argument has been used to explain both the release from and the suppression by natural enemies. We argue that this paradox can be solved by considering underlying interaction mechanisms. Using plant defenses as a model, we argue that mismatches between plant and enemy interaction traits can enhance plant invasiveness in the case of toxin-based defenses, whereas invasiveness is counteracted by mismatches in recognition-based defenses and selective foraging of generalist herbivores on plants with rare toxins. We propose that a mechanistic understanding of ecological mismatches can help to explain and predict when evolutionary novelty will enhance or suppress exotic plant invasiveness. This knowledge may also enhance our understanding of plant abundance following range expansion, or during species replacements along successional stages.


Heredity | 2006

Using mating designs to uncover QTL and the genetic architecture of complex traits

Koen J. F. Verhoeven; Jean-Luc Jannink; Lauren M. McIntyre

Analysis of quantitative trait loci (QTL) affecting complex traits is often pursued in single-cross experiments. For most purposes, including breeding, some assessment is desired of the generalizability of the QTL findings and of the overall genetic architecture of the trait. Single-cross experiments provide a poor basis for these purposes, as comparison across experiments is hampered by segregation of different allelic combinations among different parents and by context-dependent effects of QTL. To overcome this problem, we combined the benefits of QTL analysis (to identify genomic regions affecting trait variation) and classic diallel analysis (to obtain insight into the general inheritance of the trait) by analyzing multiple mapping families that are connected via shared parents. We first provide a theoretical derivation of main (general combining ability (GCA)) and interaction (specific combining ability (SCA)) effects on F2 family means relative to variance components in a randomly mating reference population. Then, using computer simulations to generate F2 families derived from 10 inbred parents in different partial-diallel designs, we show that QTL can be detected and that the residual among-family variance can be analyzed. Standard diallel analysis methods are applied in order to reveal the presence and mode of action (in terms of GCA and SCA) of undetected polygenes. Given a fixed experiment size (total number of individuals), we demonstrate that QTL detection and estimation of the genetic architecture of polygenic effects are competing goals, which should be explicitly accounted for in the experimental design. Our approach provides a general strategy for exploring the genetic architecture, as well as the QTL underlying variation in quantitative traits.


New Phytologist | 2010

Understanding natural epigenetic variation

Christina L. Richards; Oliver Bossdorf; Koen J. F. Verhoeven

Recently, there has been increased interest in understanding the role of epigenetic processes in ecology and evolution (e.g. Richards, 2006; Bossdorf et al., 2008; Johannes et al., 2008; Richards et al., 2010). We now know that some epigenetic marks are not reset each generation, but are faithfully transmitted across generations (Jablonka & Raz, 2009), that natural variation can exist not only in the DNA sequence but also at the epigenetic level (e.g. Vaughn et al., 2007) and that epigenetic variation can cause significant heritable variation in phenotypic traits (e.g. Johannes et al., 2009). Moreover, heritable epigenetic modifications can be triggered by exposure to different environmental conditions (e.g. Verhoeven et al., 2010). If we put these different pieces of evidence together, then this clearly suggests that epigenetic mechanisms could add an additional layer of complexity to heritable phenotypic variation, and thus to the diversity and evolutionary potential of natural populations. However, in spite of abundant speculation about the potential ecological and evolutionary implications of epigenetic processes, most previous work has been carried out on only a few types of agricultural crops and on model species such as Arabidopsis thaliana, frequently under artificial conditions, and we therefore still have no idea of the true importance of epigenetic processes in natural populations. Because of this, several authors have argued for expanding research efforts into ecologically relevant circumstances across model and nonmodel organisms and have outlined experimental and statistical approaches that would facilitate the merging of molecular-based insight with sound evolutionary ecology (Bossdorf et al., 2008; Johannes et al., 2008; Richards, 2008). In this issue of New Phytologist (pp. 867–876), Herrera & Bazaga provide an intriguing example of how researchers are now beginning to respond to this call.


Evolution | 2004

THE GENETIC BASIS OF ADAPTIVE POPULATION DIFFERENTIATION: A QUANTITATIVE TRAIT LOCUS ANALYSIS OF FITNESS TRAITS IN TWO WILD BARLEY POPULATIONS FROM CONTRASTING HABITATS

Koen J. F. Verhoeven; Tytti K. Vanhala; Arjen Biere; Eviatar Nevo; Jos M. M. van Damme

Abstract We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype × nutrient interaction in the common-garden experiment and genotype × site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.


Molecular Ecology | 2010

Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages.

Koen J. F. Verhoeven; Peter J. van Dijk; Arjen Biere

DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual dandelions from diploid sexual mother plants using methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. In dandelions, triploid apomictic asexuals are produced from diploid sexual mothers that are fertilized by polyploid pollen donors. We asked whether the ploidy level change that accompanies the formation of new asexual lineages triggers methylation changes that contribute to heritable epigenetic variation within novel asexual lineages. Comparison of MS‐AFLP and AFLP fragment inheritance in a diploid × triploid cross revealed de novo methylation variation between triploid F1 individuals. Genetically identical offspring of asexual F1 plants showed modest levels of methylation variation, comparable to background levels as observed among sibs in a long‐established asexual lineage. Thus, the cross between ploidy levels triggered de novo methylation variation between asexual lineages, whereas it did not seem to contribute directly to variation within new asexual lineages. The observed background level of methylation variation suggests that considerable autonomous methylation variation could build up within asexual lineages under natural conditions.


PLOS ONE | 2012

Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion

Koen J. F. Verhoeven; Thomas P. van Gurp

Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.


Molecular Ecology | 2016

Epigenetics in ecology and evolution: what we know and what we need to know

Koen J. F. Verhoeven; Bridgett M. vonHoldt; Victoria L. Sork

KOEN J. F . VERHOEVEN,* BRIDGETT M. VONHOLDT† and VICTORIA L. SORK‡§ *Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands, †Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA, ‡Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095, USA, §Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA

Collaboration


Dive into the Koen J. F. Verhoeven's collaboration.

Top Co-Authors

Avatar

Arjen Biere

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Oplaat

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim H. van der Putten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Niels Wagemaker

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Veronica Preite

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Ferreira de Carvalho

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Philippine Vergeer

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge