Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koen Nelissen is active.

Publication


Featured researches published by Koen Nelissen.


Neuron | 2001

Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys

Wim Vanduffel; Denis Fize; Joseph B. Mandeville; Koen Nelissen; Paul Van Hecke; Bruce R. Rosen; Roger B. H. Tootell; Guy A. Orban

To reduce the information gap between human neuroimaging and macaque physiology and anatomy, we mapped fMRI signals produced by moving and stationary stimuli (random dots or lines) in fixating monkeys. Functional sensitivity was increased by a factor of approximately 5 relative to the BOLD technique by injecting a contrast agent (monocrystalline iron oxide nanoparticle [MION]). Areas identified as motion sensitive included V2, V3, MT/V5, vMST, FST, VIP, and FEF (with moving dots), as well as V4, TE, LIP, and PIP (with random lines). These regions sensitive for moving dots are largely in agreement with monkey single unit data and (except for V3A) with human fMRI results. Moving lines activate some regions that have not been previously implicated in motion processing. Overall, the results clarify the relationship between the motion pathway and the dorsal stream in primates.


The Journal of Neuroscience | 2009

The Representation of Tool Use in Humans and Monkeys: Common and Uniquely Human Features

Ronald Peeters; Luciano Simone; Koen Nelissen; Maddalena Fabbri-Destro; Wim Vanduffel; Giacomo Rizzolatti; Guy A. Orban

Though other species of primates also use tools, humans appear unique in their capacity to understand the causal relationship between tools and the result of their use. In a comparative fMRI study, we scanned a large cohort of human volunteers and untrained monkeys, as well as two monkeys trained to use tools, while they observed hand actions and actions performed using simple tools. In both species, the observation of an action, regardless of how performed, activated occipitotemporal, intraparietal, and ventral premotor cortex, bilaterally. In humans, the observation of actions done with simple tools yielded an additional, specific activation of a rostral sector of the left inferior parietal lobule (IPL). This latter site was considered human-specific, as it was not observed in monkey IPL for any of the tool videos presented, even after monkeys had become proficient in using a rake or pliers through extensive training. In conclusion, while the observation of a grasping hand activated similar regions in humans and monkeys, an additional specific sector of IPL devoted to tool use has evolved in Homo sapiens, although tool-specific neurons might reside in the monkey grasping regions. These results shed new light on the changes of the hominid brain during evolution.


The Journal of Neuroscience | 2004

The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study

Katrien Denys; Wim Vanduffel; Denis Fize; Koen Nelissen; H Peuskens; David C. Van Essen; Guy A. Orban

We compared neural substrates of two-dimensional shape processing in human and nonhuman primates using functional magnetic resonance (MR) imaging in awake subjects. The comparison of MR activity evoked by viewing intact and scrambled images of objects revealed shape-sensitive regions in occipital, temporal, and parietal cortex of both humans and macaques. Intraparietal cortex in monkeys was relatively more two-dimensional shape sensitive than that of humans. In both species, there was an interaction between scrambling and type of stimuli (grayscale images and drawings), but the effect of stimulus type was much stronger in monkeys than in humans. Shape- and motion-sensitive regions overlapped to some degree. However, this overlap was much more marked in humans than in monkeys. The shape-sensitive regions can be used to constrain the warping of monkey to human cortex and suggest a large expansion of lateral parietal and superior temporal cortex in humans compared with monkeys.


Neuropsychologia | 2003

Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI.

Guy A. Orban; Denis Fize; H Peuskens; Katrien Denys; Koen Nelissen; Stefan Sunaert; James T. Todd; Wim Vanduffel

The present report reviews a series of functional magnetic resonance imaging (fMRI) activation studies conducted in parallel in awake monkeys and humans using the same motion stimuli in both species. These studies reveal that motion stimuli engage largely similar cortical regions in the two species. These common regions include MT/V5 and its satellites, of which FST contributes more to the human motion complex than is generally assumed in human imaging. These results also establish a direct link between selectivity of MT/V5 neurons for speed gradients and functional activation of human MT/V5 by three-dimensional (3D) structure from motion stimuli. On the other hand, striking functional differences also emerged: in humans V3A and several regions in the intraparietal sulcus (IPS) are much more motion sensitive than their simian counterparts.


The Journal of Neuroscience | 2011

Default Mode of Brain Function in Monkeys

Dante Mantini; Annelis Gerits; Koen Nelissen; Olivier Joly; Luciano Simone; Hiromasa Sawamura; Claire Wardak; Guy A. Orban; Randy L. Buckner; Wim Vanduffel

Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.


The Journal of Neuroscience | 2011

Action observation circuits in the macaque monkey cortex

Koen Nelissen; Elena Borra; Marzio Gerbella; Stefano Rozzi; Giuseppe Luppino; Wim Vanduffel; Giacomo Rizzolatti; Guy A. Orban

In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation of grasping actions, focusing on the superior temporal sulcus region (STS) and the posterior parietal lobe. Monkeys viewed either videos with only the grasping hand visible or videos with the whole actor visible. Observation of both types of grasping videos activated elongated regions in the depths of both lower and upper banks of STS, as well as parietal areas PFG and anterior intraparietal (AIP). The correlation of fMRI data with connectional data showed that visual action information, encoded in the STS, is forwarded to ventral premotor cortex (F5) along two distinct functional routes. One route connects the upper bank of the STS with area PFG, which projects, in turn, to the premotor area F5c. The other connects the anterior part of the lower bank of the STS with premotor areas F5a/p via AIP. Whereas the first functional route emphasizes the agent and may relay visual information to the parieto-frontal mirror circuit involved in understanding the agents intentions, the second route emphasizes the object of the action and may aid in understanding motor acts with respect to their immediate goal.


Neuron | 2007

Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape

Koen Nelissen; Olivier Joly; Claire Wardak; James T. Todd; J. Farley Norman; Peter Janssen; Wim Vanduffel; Guy A. Orban

The intraparietal cortex is involved in the control of visually guided actions, like reach-to-grasp movements, which require extracting the 3D shape and position of objects from 2D retinal images. Using fMRI in behaving monkeys, we investigated the role of the intraparietal cortex in processing stereoscopic information for recovering the depth structure and the position in depth of objects. We found that while several areas (CIP, LIP, and AIP on the lateral bank; PIP and MIP on the medial bank) are activated by stereoscopic stimuli, AIP and an adjoining portion of LIP are sensitive only to depth structure. Furthermore, only these two regions are sensitive to both the depth structure and the 2D shape of small objects. These results indicate that extracting 3D spatial information from stereo involves several intraparietal areas, among which AIP and anterior LIP are more specifically engaged in extracting the 3D shape of objects.


The Journal of Neuroscience | 2006

Charting the Lower Superior Temporal Region, a New Motion-Sensitive Region in Monkey Superior Temporal Sulcus

Koen Nelissen; Wim Vanduffel; Guy A. Orban

Although the role of the middle temporal (MT/V5) area and its medial superior temporal (MST) satellites in motion processing has been well explored, relatively little is known about motion regions located more rostrally in the superior temporal sulcus (STS), such as the fundus of the superior temporal (FST) area, the superior temporal polysensory (STP) region, or beyond. To fill this void, we used contrast-enhanced functional magnetic resonance imaging in awake macaques and a five-step testing procedure that allowed us to identify six motion-sensitive regions within the STS. Direction adaptation tests confirmed the motion sensitivity of these six regions. Five of them [MT/V5, its three satellites, and the middle part of the STP (STPm) region in the upper bank of the STS] have been documented by previous single-cell studies. A sixth, previously unknown motion-responsive region, which we termed the lower superior temporal (LST) region, was observed on the lower bank and fundus of the STS, 6–8 mm anterior to the FST area. In contrast to the MST areas, the LST region responds to slow as well as fast speeds and is responsive to static and moving images of objects, to patterns defined by opponent motion, and to actions. These results, obtained in both group and single-subject analyses, suggest that motion information in the STS might follow a second path, in addition to the MT/V5–MST path. This ventral path including the LST region, FST area, and STPm region is likely involved in the visual analysis of actions and biological motion.


NeuroImage | 2004

Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations.

Grégoire Malandain; Eric Bardinet; Koen Nelissen; Wim Vanduffel

In the past years, the development of 3-D medical imaging has enabled the 3-D imaging of in vivo tissues, from an anatomical (MR, CT) or even functional (fMRI, PET, SPECT) point of view. However, despite immense technological progress, the resolution of these images is still short of the level of anatomical or functional details that in vitro imaging (e.g., histology, autoradiography) permits. The motivation of this work is to compare fMRI activations to activations observed in autoradiographic images from the same animals. We aim to fuse post-mortem autoradiographic data with a pre-mortem anatomical MR image. We first reconstruct a 3-D volume from the 2-D autoradiographic sections, coherent both in geometry and intensity. Then, this volume is fused with the MR image. This way, we ensure that the reconstructed 3-D volume can be superimposed onto the MR image that represents the reference anatomy. We demonstrate that this fusion can be achieved by using only simple global transformations (rigid and/or affine, 2-D and 3-D), while yielding very satisfactory results.


The Journal of Neuroscience | 2011

Grasping-Related Functional Magnetic Resonance Imaging Brain Responses in the Macaque Monkey

Koen Nelissen; Wim Vanduffel

Research in recent decades has suggested the existence of a dedicated brain network devoted to the organization and execution of grasping, one of the most important and skilled movements of primates. Grasping an object requires the transformation of intrinsic object properties such as size, orientation, and shape into an appropriate motor scheme shaping the hand. Although electrophysiological recordings in the monkey model have proven invaluable for gaining insights into the neuronal substrate underlying this complex behavior, knowledge concerning the existence and organization of a similar system in the human brain is derived mainly from imaging studies. Here, we present for the first time functional magnetic resonance imaging (fMRI) of brain activity while macaque monkeys performed reaching and grasping movements in a 3 tesla MR scanner. Grasping in the dark (compared with reaching) yielded significant activations in anterior intraparietal area and ventral premotor area F5, in addition to area PFG in the rostral inferior parietal lobule, somatosensory areas (SI, SII, area 5), and the hand field of F1. Whole-brain macaque fMRI motor studies will be instrumental in establishing possible homologies concerning grasping organization in the human and monkey brains, bridging the gap between human imaging and monkey electrophysiology.

Collaboration


Dive into the Koen Nelissen's collaboration.

Top Co-Authors

Avatar

Wim Vanduffel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Orban

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Denis Fize

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrien Denys

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald Peeters

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Orban

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge