Kohei Nishitani
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kohei Nishitani.
Arthritis Research & Therapy | 2010
Koichi Murata; Hiroyuki Yoshitomi; Shimei Tanida; Masahiro Ishikawa; Kohei Nishitani; Hiromu Ito; Takashi Nakamura
IntroductionMicroRNAs (miRNAs), endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes, are present in human plasma in a stable form. In this study, we investigated whether miRNAs are also stably present in synovial fluids and whether plasma and synovial fluid miRNAs could be biomarkers of rheumatoid arthritis (RA) and osteoarthritis (OA).MethodsWe measured concentrations of miR-16, miR-132, miR-146a, miR-155 and miR-223 in synovial fluid from patients with RA and OA, and those in plasma from RA, OA and healthy controls (HCs) by quantitative reverse transcription-polymerase chain reaction. Furthermore, miRNAs in the conditioned medium of synovial tissues, monolayer fibroblast-like synoviocytes, and mononuclear cells were examined. Correlations between miRNAs and biomarkers or disease activities of RA were statistically examined.ResultsSynovial fluid miRNAs were present and as stable as plasma miRNAs for storage at -20°C and freeze-thawing from -20°C to 4°C. In RA and OA, synovial fluid concentrations of miR-16, miR-132, miR-146a, and miR-223 were significantly lower than their plasma concentrations, and there were no correlation between plasma and synovial fluid miRNAs. Interestingly, synovial tissues, fibroblast-like synoviocytes, and mononuclear cells secreted miRNAs in distinct patterns. The expression patterns of miRNAs in synovial fluid of OA were similar to miRNAs secreted by synovial tissues. Synovial fluid miRNAs of RA were likely to originate from synovial tissues and infiltrating cells. Plasma miR-132 of HC was significantly higher than that of RA or OA with high diagnosability. Synovial fluid concentrations of miR-16, miR-146a miR-155 and miR-223 of RA were significantly higher than those of OA. Plasma miRNAs or ratio of synovial fluid miRNAs to plasma miRNAs, including miR-16 and miR-146a, significantly correlated with tender joint counts and 28-joint Disease Activity Score.ConclusionsPlasma miRNAs had distinct patterns from synovial fluid miRNAs, which appeared to originate from synovial tissue. Plasma miR-132 well differentiated HCs from patients with RA or OA, while synovial fluid miRNAs differentiated RA and OA. Furthermore, plasma miRNAs correlated with the disease activities of RA. Thus, synovial fluid and plasma miRNAs have potential as diagnostic biomarkers for RA and OA and as a tool for the analysis of their pathogenesis.
Journal of Orthopaedic Research | 2011
Sohel M. Julovi; Hiromu Ito; Kohei Nishitani; Christopher J. Jackson; Takashi Nakamura
We investigated the effects of hyaluronan (HA) on interleukin‐1β (IL‐1β)‐stimulated matrix metalloproteinase (MMP)‐13 production in human chondrocytes from patients with osteoarthritis (OA) or rheumatoid arthritis (RA). Secreted levels of MMP‐13 in conditioned media were detected by immunoblotting, while intracellular MMP‐13 synthesis in articular cartilage was evaluated by immunofluorescence microscopic analysis. Mitogen‐activated protein kinases (MAPKs), p38, extracellular signal‐regulated kinases (ERK), and c‐jun NH2‐terminal kinase (JNK) were assessed by Western blotting. IL‐1β (2 ng/ml) stimulates the secretion of MMP‐13 in both OA and RA chondrocytes. Inhibition studies using specific MAPK inhibitors revealed that IL‐1β induced MMP‐13 via p38 in both OA and RA chondrocytes. HA down‐regulates IL‐1β‐stimulated MMP‐13 and phosphorylated p38 (p‐p38) in a dose‐dependent manner (0.1, 1, 2, and 4 mg/ml). When used at 4 mg/ml, HA inhibits p‐p38 phosphorylation by more than 60%. In response to IL‐1β, RA chondrocytes express a higher level of p‐p38 than that of OA chondrocytes. Inhibition of CD44, using a blocking antibody, significantly reversed the inhibitory effect of HA on both MMP‐13 and p‐p38. Our study clearly shows that HA inhibits IL‐1β‐induced MMP‐13 via its principal receptor, CD44, and subsequent intracellular p38 MAPK signaling in OA and RA chondrocytes.
Journal of Orthopaedic Research | 2011
T. Shirai; Masahiko Kobayashi; Kohei Nishitani; T. Satake; Hiroshi Kuroki; Yasuaki Nakagawa; Takashi Nakamura
The aim of this study was to determine how alendronate (ALN) alters cartilage degeneration and periarticular bone quality in a rabbit anterior cruciate ligament transection (ACLT) model of osteoarthritis (OA). Thirty rabbits underwent an ACLT on the left knee and a sham operation on the right knee. Fifteen rabbits received weekly subcutaneous injections of ALN (0.14 mg/kg) and 15 rabbits (the control [cont] group) received saline. Animal knees were divided into four groups: cont/sham, cont/ACLT, ALN/sham, and ALN/ACLT. Histological, radiological, and immunohistochemical indices were evaluated for each group. Bone volume ratios by micro‐computed tomography showed that ALN prevented periarticular bone loss. Histologically, the cont/ACLT group had significantly worse cartilage damage than the cont/sham group 12 weeks after the surgery. However, the ALN/ACLT group had mild cartilage degeneration compared with that of the ALN/sham group. Immunohistochemical analysis showed that ALN suppressed the expression of matrix metalloproteinase‐13, interleukin‐1β, type‐X collagen, vascular endothelial growth factor, and receptor activator of nuclear factor κB ligand in OA cartilage. ALN had a chondroprotective effect in an experimental rabbit model of OA.
Cytokine | 2009
Shimei Tanida; Hiroyuki Yoshitomi; Kohei Nishitani; Masahiro Ishikawa; Toshiyuki Kitaori; Hiromu Ito; Takashi Nakamura
Although a notable amount of CCL20 is detectable in the synovial fluid of human rheumatoid arthritis (RA), its role in the pathogenesis of RA remains to be determined. IL-1beta vigorously induced the production of CCL20 from FLSs of human RA and the production of CCL20 induced by TNF-alpha was partially attributed to a trace amount of IL-1beta induced by TNF-alpha. Although IL-6 failed to induce CCL20, TNF-alpha-induced IL-6 enhanced the production of CCL20 in an autocrine/paracrine manner. To determine the role of CCL20 and its sole receptor CCR6 in the recruitment of mononuclear cells (MNCs) into the inflamed joint of RA, conditioned medium of IL-1beta-stimulated FLSs was used in migration assays. The conditioned medium significantly recruited CCR6(+) MNCs in a CCL20-dependent manner. The production of CCL20 induced by TNF-alpha and IL-1beta was modified by helper-T-cell-derived cytokines. Interestingly, CCL20 enhanced the production of IL-6 coordinately with the stimulation of IL-17 but not with that of IFN-gamma. These findings imply FLSs stimulated by proinflammatory cytokines recruit CCR6(+) MNCs including IL-17-producing-helper T cells into the inflamed joint, leading to the enhancement of the production of CCL20, which chemokine and IL-17 coordinately induce proinflammatory cytokines.
Journal of Orthopaedic Research | 2015
Kohei Nishitani; Werasak Sutipornpalangkul; Karen L. de Mesy Bentley; John J. Varrone; Sheila N. Bello-Irizarry; Hiromu Ito; Shuichi Matsuda; Stephen L. Kates; John L. Daiss; Edward M. Schwarz
While it is well known that Staphylococcus aureus establishes chronic implant‐associated osteomyelitis by generating and persisting in biofilm, research to elucidate pathogen, and host specific factors controlling this process has been limited due to the absence of a quantitative in vivo model. To address this, we developed a murine tibia implant model with ex vivo region of interest (ROI) imaging analysis by scanning electron microscopy (SEM). Implants were coated with Staphylococcus aureus strains (SH1000, UAMS‐1, USA300LAC) with distinct in vitro biofilm phenotypes, were used to infect C57BL/6 or Balb/c mice. In contrast to their in vitro biofilm phenotype, results from all bacteria strains in vivo were similar, and demonstrated that biofilm on the implant is established within the first day, followed by a robust proliferation phase peaking on Day 3 in Balb/c mice, and persisting until Day 7 in C57BL/6 mice, as detected by SEM and bioluminescent imaging. Biofilm formation peaked at Day 14, covering ∼40% of the ROI coincident with massive agr‐dependent bacterial emigration, as evidenced by large numbers of empty lacunae with few residual bacteria, which were largely culture negative (80%) and PCR positive (87.5%), supporting the clinical relevance of this implant model.
Journal of Cellular Biochemistry | 2009
Kohei Nishitani; Hiromu Ito; Teruko Hiramitsu; Ryosuke Tsutsumi; Shimei Tanida; Toshiyuki Kitaori; Hiroyuki Yoshitomi; Masahiko Kobayashi; Takashi Nakamura
Prostaglandin E2 (PGE2) is one of pro‐inflammatory mediators. PGE2 maintains the homeostasis of many organs including articular cartilage, and a previous report showed that continuous inhibition of PGE2 accelerates the progression of osteoarthritis (OA). While PGE2 inhibits matrix metalloprotease (MMP) expression in several types of cells, little is known on direct effects of PGE2 on MMP expression in articular chondrocytes. The objective of this study was to investigate direct effects of PGE2 on IL‐1β‐induced MMP‐1 and MMP‐13 expression and the intracellular signaling in articular chondrocytes. PGE2 showed inhibitory effects on IL‐1β‐induced MMP‐1 and MMP‐13 expression demonstrated by immunoblotting both in OA and normal chondrocytes, which was further confirmed by enzyme‐linked immunosorbent assay and immunohistochemistry of explant cultures of articular cartilages. An EP4 agonist, ONO‐AE1‐329, mimicked the inhibitory effect of PGE2, while an EP4 antagonist, ONO‐AE3‐208, blocked the effects. PGE2 suppressed the phosphorylation of JNK and ERK MAP kinases, but only knockdown of JNK by specific siRNA mimicked the effect of PGE2. PGE2 further inhibited the phosphorylation of MKK4 without suppression of MKK7 phosphorylation, and of c‐JUN to decrease expression levels of MMP‐1 and MMP‐13. These results demonstrate that PGE2 inhibits IL‐1β‐induced MMP‐1 and MMP‐13 productions via EP4 by suppressing MKK4–JNK MAP kinase–c‐JUN pathway. J. Cell. Biochem. 109: 425–433, 2010.
Journal of Orthopaedic Research | 2014
John J. Varrone; Karen L. de Mesy Bentley; Sheila N. Bello-Irizarry; Kohei Nishitani; Sarah Mack; Joshua G. Hunter; Stephen L. Kates; John L. Daiss; Edward M. Schwarz
Towards the development of a methicillin‐resistant Staphylococcus aureus (MRSA) vaccine we evaluated a neutralizing anti‐glucosaminidase (Gmd) monoclonal antibody (1C11) in a murine model of implant‐associated osteomyelitis, and compared its effects on LAC USA300 MRSA versus a placebo and a Gmd‐deficient isogenic strain (ΔGmd). 1C11 significantly reduced infection severity, as determined by bioluminescent imaging of bacteria, micro‐CT assessment of osteolysis, and histomorphometry of abscess numbers (p < 0.05). Histology also revealed infiltrating macrophages, and the complete lack of staphylococcal abscess communities (SAC), in marrow abscesses of 1C11 treated mice. In vitro, 1C11 had no direct effects on proliferation, but electron microscopy demonstrated that 1C11 treatment phenocopies ΔGmd defects in binary fission. Moreover, addition of 1C11 to MRSA cultures induced the formation of large bacterial aggregates (megaclusters) that sedimented out of solution, which was not observed in ΔGmd cultures or 1C11 treated cultures of a protein A‐deficient strain (ΔSpa), suggesting that the combined effects of Gmd inhibition and antibody‐mediated agglutination are required. Finally, we demonstrated that macrophage opsonophagocytosis of MRSA and megaclusters is significantly increased by 1C11 (p < 0.01). Collectively, these results suggest that the primary mechanism of anti‐Gmd humoral immunity against MRSA osteomyelitis is macrophage invasion of Staphylococcal abscess communities (SAC) and opsonophagocytosis of megaclusters.
American Journal of Sports Medicine | 2009
Kohei Nishitani; T. Shirai; Masahiko Kobayashi; Hiroshi Kuroki; Yoshiaki Azuma; Yasuaki Nakagawa; Takashi Nakamura
Background Cartilage and subchondral bone have recently been considered an osteochondral unit. The treatment of osteo-chondral lesions is still challenging, but better subchondral bone repair may result in higher quality repaired cartilage. Hypotheses Alendronate accelerates bone formation in osteochondral defects and affects the quality of the repaired cartilage. Study Design Controlled laboratory study. Methods Osteochondral defects were made on the left trochleas of 50 rabbits, which were assigned to 1 of 3 groups: control, ALN (weekly subcutaneous injection of 0.14 mg/mL alendronate), and ALN-S (alendronate injection in the first 8 weeks only). They were evaluated at 4, 8, 24, and 52 weeks. Bone repair was evaluated with microcomputed tomography and histologic evaluation. Cartilage repair was evaluated with ultrasound and histologic analyses. Results At 4 weeks, the defects were filled, and cartilage-like repair tissue was observed in the ALN group, whereas the defects were incompletely filled in the control group. Alendronate treatment enhanced early bone formation and mineralization in the osteochondral defect for the first 8 weeks. The continuous injection of alendronate for 24 weeks resulted in delayed bone remodeling, but the rabbits in the ALN-S group showed good integrity of the subchondral bone plate, without delayed remodeling. At 52 weeks, the ALN-S group had a columnar arrangement of chondrocytes that had less fibrillation and looked superior to those in the ALN and control groups. Ultrasound analysis showed better quality of repaired cartilage of the ALN and ALN-S group than the control group. Conclusion Alendronate accelerated bone formation without inhibiting its mineralization but thereafter inhibited bone remodeling in an osteochondral defect. The withdrawal of alendronate at 8 weeks avoided the delayed remodeling and showed better sub-chondral bone repair. At 52 weeks, better subchondral bone repair resulted in better cartilage quality. Clinical Relevance: Alendronate administered in the early period accelerates bone formation and improves the quality of the repaired cartilage.
Arthritis Research & Therapy | 2008
Hiroshi Kuroki; Yasuaki Nakagawa; Koji Mori; Masahiko Kobayashi; Ko Yasura; Yukihiro Okamoto; Takashi Suzuki; Kohei Nishitani; Takashi Nakamura
IntroductionThere is a lack of data relating the macroscopic appearance of cartilage to its ultrasound properties. The purpose of the present study was to evaluate degenerated cartilage and healthy-looking cartilage using an ultrasound system.MethodsUltrasound properties – signal intensity (a measure of superficial cartilage integrity), echo duration (a parameter related to the surface irregularity) and the interval between signals (that is, time of flight – which is related to the thickness and ultrasound speed of cartilage) – of 20 knees were measured at seven sites: the lateral femoral condyle (site A, anterior; site B, posterior), the medial condyle (site C), the lateral tibial plateau (site D, center; site E, under the meniscus) and the medial tibial plateau (site F, anterior; site G, posterior). The sites were evaluated macroscopically and classed using the International Cartilage Repair Society (ICRS) grading system.ResultsThe signal intensity of grade 0 cartilage was significantly greater than the intensities of grade 1, grade 2 or grade 3 cartilage. Signal intensity decreased with increasing ICRS grades. The signal intensity was greater at site B than at site C, site D, site F and site G. The signal intensity of grade 0 was greater at site B than at site E. The echo duration did not differ between the grades and between the sites. The interval between signals of grade 3 was less than the intervals of grade 0, grade 1 or grade 2. The interval between signals at site C was less than the intervals at site A, site B, site D, and site E.ConclusionSite-specific differences in signal intensity suggest that a superficial collagen network may be maintained in cartilage of the lateral condyle but may deteriorate in cartilage of the medial condyle and the medial tibial plateau in varus knee osteoarthritis. Signal intensity may be helpful to differentiate ICRS grades, especially grade 0 cartilage from grade 1 cartilage.
Infection and Immunity | 2015
Christopher W. Farnsworth; Cindy T. Shehatou; Robert Maynard; Kohei Nishitani; Stephen L. Kates; Michael J. Zuscik; Edward M. Schwarz; John L. Daiss; Robert A. Mooney
ABSTRACT Obesity and diabetes are among the greatest risk factors for infection following total joint arthroplasty. However, the underlying mechanism of susceptibility is unclear. We compared orthopedic implant-associated Staphylococcus aureus infections in type 1 (T1D) versus type 2 (T2D) diabetic mouse models and in patients with S. aureus infections, focusing on the adaptive immune response. Mice were fed a high-fat diet to initiate obesity and T2D. T1D was initiated with streptozotocin. Mice were then given a trans-tibial implant that was precoated with bioluminescent Xen36 S. aureus. Although both mouse models of diabetes demonstrated worse infection severity than controls, infection in T2D mice was more severe, as indicated by increases in bioluminescence, S. aureus CFU in tissue, and death within the first 7 days. Furthermore, T2D mice had an impaired humoral immune response at day 14 with reduced total IgG, decreased S. aureus-specific IgG, and increased IgM. These changes were not present in T1D mice. Similarly, T2D patients and obese nondiabetics with active S. aureus infections had a blunted IgG response to S. aureus. In conclusion, we report the first evidence of a humoral immune deficit, possibly due to an immunoglobulin class switch defect, in obesity and T2D during exacerbated S. aureus infection which may contribute to the increased infection risk following arthroplasty in patients with T2D and obesity.